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There has been recent interest in extending automaton theory to 
encompass aspects of machine, language, and control theories [1], [2]. 
This paper presents a minimal realization theory for discrete-time 
machines in suitable categories with such applications, but assuming no 
background outside pure mathematics except perhaps as motivation. 
Minimal realization is proved in the strong form of an adjunction between 
behavior and a realization construction generalizing Nerode's [8]. We 
wish to thank Michael Arbib, Lee Carlson, Saunders Mac Lane, and 
Lotfi Zadeh for their encouragement and/or technical assistance. 

If C is a category, |C| denotes its class of objects; and the composite 
of A 4> B -2* C is written A ^ C. Functors are written after their arguments. 

1. X-automata. In the first four sections C is a fixed suitable category, 
i.e., closed symmetric monoidal [7] with countable coproducts and cano-
ical cofactorizations [6]. Let Mon be the category of monoids [7] in C 
For Xe|C|, let X* = ]J f©'X, the coproduct over the nonnegative 
integers of iterated "tensor" powers © f of X, where ® is the multiplica­
tion in C Let i0:I -» X* be the zeroth injection, from ® °X = /, the 
identity for ® in C Finally, define \i : X* ® X* -• X* to be the composite 

(llr®
rx) ® (il®5*) = UJ®rx)®(®sx) sUr,s®

r+S* - ** 

where the first isomorphism uses the distributivity of ® over ]J which 
arises from the adjointness of®, the second isomorphism is a generalized 
associative law in C, and the third morphism is defined by letting its 
<r, 5>-component be the r + s injection ® r + s X - ^ X*. Then [7], 
<X*, ju, ï0> e \Mon\. 

For M e |Afon|, let Ac^ be the category of right M-actions in Q that 
is, a:S ® M -> S satisfying appropriate identities [7]. For Xe|C|, an 
X-monadic algebra in C is ô:S ®X -> S; and a morphism h:ö -> ô' of 
such algebras is h:S -> S" such that (h ® X)ô' = ôh Let Mondx be the 
resulting category, ô is often called a transition morphism. 
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THEOREM 1. Actx* s Mondx. 

A point for an M-action or X-monadic algebra is a: I -• S in C. Denote 
the categories of pointed actions and algebras, with morphisms preserving 
the points, by Acff and Au? respectively, the latter for X-automata. 
These generalize Kalman's modules in [5]. 

COROLLARY 2. Ac^ s Autx. 

Let <X*, /2, i0> with /2 : X* ® X -• X* be the X-automaton corre­
sponding by this corollary to the action [i : X* ® X* -• X* of X* on 
itself. 

THEOREM 3. <X*, /2, i0> w an initia/ X-automaton. 

If <S,<5,<7> is an X-automaton, let <5+:X*->S denote the unique 
X-automaton morphism Call <S, <5, cr> reachable iff <5+ is epic in C 

THEOREM 4. ^wf* has co-images. 

This preliminary material works for somewhat less than suitable 
categories, since the internal horn is not used Only Theorem 4 uses 
canonical cofactorizatioa 

2. Machines. A machine M in C is <X, S, Y, <5, A, (T> such that <S, 5, <r> 
is an X-automaton and A : S -» 7 is a morphism in C We also fix X and 
speak of the X-machine <S, 1̂  5, A, o*>. M is reachable iff its X-automaton 
is. A morphism of X-machines is a pair <a, b> with a : S -• S', b : Y -• F 
such that a is an X-automaton morphism and Ab = aX. Denote the 
category of reachable X-machines and morphisms in C by Mx. S, Y 
(resp. a, b) are the state and ottfpwt objects (resp. components) of M (resp. 
<a,b». X is the input object 

An X-behavior in C is a morphism ƒ : X* -> X and a morphism ƒ --* ƒ' 
of X-behaviors is b : Y-> F such that fb = ƒ'. Let Bx denote the category. 
Given an X-machine M, let ME = <5+A:X* -» X where 5+ arises from 
the X-automaton of M; given <a, b> : M -* Af in M*, let <a, b>E = b. 
Then E : M* -• Bx is a functor, called the external behavior functor. 
Say that M realizes ƒ iff ME = ƒ 

Given ƒ : X* -• X let f A be the X-automaton <[X*, Y], ar, 07 >, where 
oif : [X*, Y] ® X -• [X*, Y] and <rf : ƒ -• [X*, Y] are the adjoint trans­
forms of the composites 

([X*, Y] ® X) ® X* s [X*, Y] ® (X* ® jjflt*'^»»*'»''*>, 

[X*, Y ] ® X * A X 
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and I ® X* ^ X* -4 Y where it: X -• X* is the coproduct injection and 
v is the "evaluation" morphism or co-unit arising from the adjunction 
® H [ , ]. Given b:f-+f' in Bx, let bA = [X*,b]. Then A:Bx-^Autx 

is a functor. Given fe\Bx\, let ƒ : X* -• [X*, 7] be the unique X-
automaton morphism <X*, fi, i0} -• / A Let e0 denote the composite 
[X*, 7] s [X*, 7] ® / [**'Y]®S [X*, Y] ® X* A 7. 

LEMMA 5. /e 0 = ƒ 

Now let M be an X-machine, and define 1 : S -> [X*, 7] to be the 
adjoint transform of the composite S ® X* •£ S i- 7. 

LEMMA 6. 1: S -^ f A is an X-automaton morphism, and le0 — X. 

Note that by the uniqueness of X-automaton morphisms from 
<X*,/2, i0>? we must have S+l = ME These results are summarized as 
follows. 

THEOREM 7 (INTRINSIC FACTORIZATION). Gwew a« X-machine M with 
behavior f = ME, the following commutes in C: 

3. Minimal realization. Given a behavior J:X* -> Y, let (Sf,ôf,<jfy 
be the X-automaton coimage of the automaton morphism/: X* -• [X*, 7] 
(using Theorem 4). The automaton morphism X* -> Sf is epic in C, 
and must be ôf by Theorem 3, so that this X-automaton is reachable. 
Let Àf be the composite Sf -» [X*, 7] ->e° 7, where the first map is 
the other part of the co-image factorization of ƒ (and incidentally is a 
strong monic in Q. Then fN = <Sy, 1̂  5ƒ, 2 r, (T/> is the Nerode [8] 
realization off. That /V£ = ƒ follows from Lemma 5. That N is a functor 
1?* -» M* follows automatically from our main result, the universal 
property for fN. We sketch a prooÇ much of the work being contained 
in the previous results. 

THEOREM 8. Given a suitable category C,X e\C\, and an X-behavior f 
each morphism ME -> fin Bx with M e \MX\ is gEfor a unique g:M -* fN 
in Mx. Moreover, the state component o f g is epic in C. 
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PROOF. Let b : ME -» ƒ in Bx, and consider in Au? the diagram 

There is a unique a: S -• S / such that everything commutes, because 
<5+ is epic, ô+X(bA) = ƒ, and 5ƒ is the co-image of ƒ. Because a is an 
automaton morphism (a,b}:M -+fN is in Mx if lb = a^ ; but this 
follows from Lemma 6 by composing the right front square above with 

[x"r]— 

' Mb] 

e0 • Y ' 

[* IV] 
e0 

the above square which commutes by naturality of the constructions 
involved Now <a, b}E = b: ME -• f NE — ƒ as required, and it remains 
to show <a, b} is the only X-automaton morphism such that gE = b, 
which follows since <5+ is epic. • 

General lore [7] about adjoints now gives a number of results. 

THEOREM 9. The functor E : Mx 

as a right adjoint left inverse. 
If has the N erode functor N : É* -• M* 

We say a machine M is minimal iff it is reachable and satisfies the 
following condition for some /e|!?*|:For any reachable X-machine 
M' and any morphism h : M'E -> ƒ in Bx, there is a unique g:M' -+M 
in M* such that gE — K Then any two minimal realizations of ƒ are 
isomorphic. We also say M is reduced iff the morphism I : X -» [X*, Y] 
is strong monic [6] in C 

THEOREM 10. fN is a minimal realization of fe\Bx\. 

THEOREM 11. The full subcategory F? of Mx with reduced machines as 
objects is reflective. 
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THEOREM 12. A machine is minimal iff reduced and reachable. 

Thus, M is a minimal realization of ƒ iff M is reduced, reachable, and 
realizes ƒ. This suggests the following globalization: A minimal realization 
functor is a right adjoint left inverse to the behavior functor. The Nerode 
function is one by Theorem 9, the proof of which also shows that N is 
a minimal realization functor iff each fN is reduced (or equivalently by 
Theorem 12, minimal, since it is already reachable) and realizes ƒ. More­
over, since it is a right adjoint, a minimal realization functor preserves 
all (inverse) limits, for example products, and also monies. The adjunction 
E-\N has a unit natural transformation r\ : Mx -> EN, called the reduction 
transform since rjM:M -• MEN takes a machine to its reduced form; 
and N:BX -• Mx is a minimal realization functor iff NE = Bx and there 
is a natural transformation rj : Mx -> EN such that qE = E and Afy = A[. 
Moreover, in this case each r\M has epic state component. 

4. Realization in subcategories. A pair MUB1 of subcategories of 
Mx, BP is appropriate iff the restrictions of JV and E to Bx and Mi factor 
through Mt and 1^ (respectively) giving N1:B1-> M1 right adjoint 
left inverse to Ex : Bx -> M^ Since Ex is a right inverse, it is surjective, 
so that Bx = Afx JS. Clearly all results of §3 hold for an appropriate pair 
of subcategories: fNt is minimal and reduced; Nt preserves limits and 
monies; the adjunction's unit rj1 satisfies Y\1E1 = Et and Ntf1 = Nx; 
and each rj^ has epic state component. 

PROPOSITION 13. Let Cl9 C2 be subcategories of C, let Xe\C[ and let 
Mx = MX(C1,C2) be the subcategory of Mx with state components (of 
machines and morphisms) in C\ and output components in C2. If Cx is 
closed under quotients {Le., all epics ifC with domain in C\ lie in Cx\ then 
Mx, Bx = MXE is an appropriate pair. 

For X, Ye |C| and C± a subcategory of C, let MX'Y(C±) = MX(CU {Y}\ 
where { Y} is the subcategory of C with only the object Y and its identity. 
WriteMXY for MX>Y(Q. 

COROLLARY 14. MX,Y,MX,YE is an appropriate pair; and if C^ is closed 
under quotients, so is MX>Y(C1), Mx>Y(Ci)E. 

5. Applications. The category of sets is suitable with binary Cartesian 
product, giving a minimal realization theory for discrete (possibly infinite) 
machines. The full subcategory of finite sets is closed under quotients, 
so Proposition 13 gives the theory for standard finite automata In this 
case, a realization M of ƒ is minimal in our sense iff its state set has 
minimal cardinality among all finite realizations of ƒ. Most results in §3 
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are new even for this well-studied case; see [4] for further discussion. 
If y is the two point set {0,1} and X is finite, then Corollary 14 gives 

an adjunction between finite state (or regular) languages and minimal 
acceptors. 

The category of modules over a commutative ring K with unit is 
suitable with tensor product ®K, and its full subcategory of finitely 
generated modules is closed under quotients. Because <5 : S ® K X -> S 
linear corresponds to ô:S x X ^> S bilinear, we call the machines in 
this theory bilinear transition machines. Actually, it is better for concrete 
applications to let C be the full subcategory with all Ks as objects, where S 
is a set giving a distinguished basis for the free module Ks. This is also 
suitable. The special case where K = Y = 2, the two point field, gives 
an adjunction between bilinear transition acceptors and (arbitrary) 
languages having the basis for X as alphabet, since these correspond 
naturally to linear ƒ : X* -» 2. 

An affine morphism A-+ B between modules is a function of the form 
ƒ + b, where ƒ : A -» B is linear and beB. The category AffK of modules 
over K with affine morphisms is suitable with affine tensor product 
A®KB = A®KB + A + B. We call the machines and behaviors: 
affine since Ô:S®KX -• S affine corresponds to ô:S x X -+ S biaffine. 
The subcategory of finitely generated modules is closed under quotients. 
Again, it is better for applications to use the suitable subcategory with 
objects Ks. Indeed, these machines seem to give a better and richer 
model for physical systems than the usual linear systems. Because any 
linear ô : X x X -• S is biaffine, the linear machines form a subcategory. 
But a minimal affine realization of a linear behavior can be simpler than 
any linear realization. Moreover, affine machines are richer in (loosely 
speaking) allowing multiplications between inputs and states. This type 
of machine and its minimal realization theory seem to be new. 

The category Kett of all Kelley (often called compactly generated T2) 
spaces [3] with binary Cartesian product is suitable. This gives a new mini­
mal realization theory for continuous (generally nonlinear) machines. Here 
minimality cannot be expressed the traditional way, that some numerical 
characteristic of the state space is least, because Kelley spaces admit 
no such convenient number. 

Finally we remark that the restriction to a fixed input object X can 
be removed; see [4]. 
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