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1. Introduction. In this note we will discuss the spectrum of tensor 
products of not necessarily bounded operators on Banach spaces X and 
Y X ® Y will denote the tensor product of X and Y in some uniform 
cross-norm [1], Thus, (i) X ® y is the completion of the algebraic tensor 
product in a norm with ||x ® y\\ = ||x|| \\y\\; (ii) for any Ae5£{X\ the 
bounded operators on X, and Be^(Y\ there is an operator A® Be 
Se{X ® Y) with (A ®B)(x®y) = Ax® By and \\A ® B\\ = \\A\\ \\B\\. 
Typical examples of such uniform cross-norms are the usual Hilbert space 
tensor product norm and the LP norm on LP(X ® X d\i ® dv) = LP(X, dfi) 
® LP(X dv)(l ^ p < oo). 

Given a polynomial (or a rational function) in two variables and closed 
operators A on X and B on Y, we want to discuss the spectrum of 
P(A ® ƒ, / ® B) as an operator on X ® Y For unbounded operators, 
one must define what it means for an operator C on X ® Y "to be" 
P(A ® 1,1 ® B). We take a fairly strong definition: 

DEFINITION 1. Given a closed operator A with nonempty resolvent set 
on a Banach space, X, we say that a sequence An of bounded operators 
on X is an âiï{A)~approximation if and only if An converges to A in norm 
resolvent sense [2] and each An is a polynomial in resolvents of A. 

DEFINITION 2. Given closed operators A and B on Banach spaces X 
and X and a rational function, P(z, co\ we say that a closed operator 
C on X ®Y equals P(A ®I9I®B) (or P(A, B\ for short) if and only if, 
there exists an ^(A)-approximation, Am and an ^(B)-approximation, Bn9 

so that P(Am Bn) converges in norm resolvent sense to C. 
Existence and uniqueness questions for P(A9 B) naturally arise. In 

applying Theorem 1 below, all the hard analysis is in proving that existence 
holds. The existence and uniqueness question is discussed in detail in a 
forthcoming paper [3], primarily in the case where A and B are generators 
of bounded holomorphic semigroups. In the general case, we do not know 
whether it is possible for two different operators C and C to both "equal" 
P(A9 B) but in that case our proof of Theorem 1 implies that (C - k)~l 

— (C — A)"1 is quasinilpotent. 

AMS 1970 subject classifications. Primary 47A60; Secondary 46L15. 
Key words and phrases. Spectrum, tensor products, Gelfand theory. 
1 On leave from the Department of Mathematics, Princeton University. 
2 A Sloan Foundation Fellow. 

Copyright © American Mathematical Society 1972 

730 



TENSOR PRODUCTS OF UNBOUNDED OPERATORS 731 

THEOREM 1. Let X and Y be Banach spaces and let X ®Y be their 
tensor product in some uniform cross-norm. Let A and B be closed operators 
on X and Y respectively with nonempty resolvent sets so that each is either 
bounded or has unbounded spectra. Let C = P(A ® 1,1 (x) B) in the sense 
of Definition!. Then 

(j(C) = P(a(A\ CT(B)) = {P(A, JI)|A e a(A), p e a(B)}. 

REMARKS. 1. This is the main theorem of this note. However, we feel 
the method of proof is sufficiently interesting in its own right, so we 
introduce some of the ideas below. 

2. The interesting case of Theorem 1 occurs when P(a(A\ <J{B)) is not 
closed. This can only occur if at least one of the operators is unbounded. 
That it can occur is easily seen by choosing suitable selfadjoint operators 
and applying the spectral theorem. 

3. Our hypothesis that <r(A) be unbounded if A is unbounded rules 
out such pathological operators as inverses of quasinilpotents with trivial 
kernel and cokernel which have empty spectra The hypothesis will enter 
the proof because it will allow us to approximate "the spectrum at 
infinity" with the spectrum at finite points. 

4. Spectra of tensor products have been discussed in [4], [5], [6]. 
The case of Theorem 1 where both A and B are bounded has already 
been proven by Schecter. Only Ichinose has discussed the unbounded 
case and he has restricted himself to cases where P(v(A\ <r(B)) is closed. 

5. Our interest in the problem of the spectra of tensor products was 
aroused by recent work on iV-body Schrödinger operators which required 
an analysis of the spectra of non-normal sectorial operators [7], [8]. 

6. Our results extend to tensor products of n operators. 

2. The bounded case. The key tool in the proof of Theorem 1 is the 
Gelfand theory of commutative Banach algebras. We first need to analyze 
the bounded case precisely. The algebras we will use are 

DEFINITION 3. Let Ae£?(X). 01(A) will be the Banach subalgebra of 
i£{X) generated by 0to(A), the polynomials in resolvents of A. 

Notice that A e 01(A) since A = l i m ; ^ \k2(X -A)'1 - X]. Moreover 
since (A — pi) {A — p)'1 = 1 for any pep(A\ the resolvent set for A, 
l((A - p)'1) = (1(A) - p)'1 for any lea(0t(A)\ the Gelfand spectrum of 
0t(A). Thus Â, the Gelfand transform of A, is a homeomorphism of <r(ât(A)) 
and G(A) so <r(âiï(A)) can be thought of as a subset of C. This is true even 
though 01(A) is not generated by A if p(A) is not connected. Notice that 
the spectrum of A relative to 01(A) is by construction its spectrum as an 
element of $£(X). 
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Given A e SB(X) and Be£B(Y\ and X ® Y in a uniform cross-norm, 
we let 0io(A) ® 0io(B) be the algebra in SB (X ® Y) of finite sums of tensor 
products of operators in 3iï0(A) and 0to(B) and we let 01(A) ® 0t(B) be its 
closure mSC(X ® Y). Then, when AeSB(X\ Be SB(Y)\ 

THEOREM 2. a(0t(A) ® 01(B)) £ <r(̂ (,4)) x a(0t(B)). 

THEOREM 3. IfCe0to(A) ® 0to(B\ in particular, if C is a polynomial in 
A® I and I ® B, then 

0t(C) c 0t(A) ® 01(B). 

REMARKS. 1. Theorem 2 is a statement that the tensor product of 
lx e <r(0l(A)) and l2 e a(0t(B)) which has an obvious definition on 0to(A) ® 
0to(B) is bounded and so extends to 91(A) ® 01(B). We prove this only 
for the tensor product of multiplicative linear functionals. By a very 
different method one can prove that the tensor product of arbitrary 
linear functionals extends [11]. 

2. Theorem 3 is an improvement of a result of Schechter who proved 
that 01(C) is in the double commutant of 01(A) ® 01(B). 

3. In case A and B are bounded, Theorem 1 follows easily from 
Theorems 2 and 3. 

4. The key lemma in the proof of Theorems 2 and 3 is that when 
C€0to(A) ® 0to(B\ then the spectrum of C as an element ofSB(X® Y) 
contains {(lx ® l2)(C)\h e °(0l(A)\ l2 e a(0t(B))}. This is proven using the 
method of Brown and Pearcy [4] together with the following fact from 
the theory of several complex variables [9]: If ƒ is holomorphic in a 
neighborhood of D, a compact subset of C2, and ƒ vanishes at a point in 
D, then ƒ vanishes somewhere on dD, the topological boundary of D. 

3. Applying multiplicative linear functionals to unbounded operators. 
The second key element in the proof of Theorem 1 involves the application 
and refinement of an idea in Hille-Phillips [10]. 

Let A be a closed unbounded operator on X with nonempty resolvent 
set. Define 01(A) to be the closed algebra generated by the resolvents of A. 
By the first resolvent identity, 01(A) = 0t((A - fi)~l) for any \i e p(A). 

DEFINITION 4. Pick fiep(A). Given lea(0t(A)\ define 1(A) to be oo 
if l((A - //)- *) = 0 and to be [i + l((A - p)~ l)~x if l((A - /*)" *) * 0. 

Again by the first resolvent identity, 1(A) is independent of the choice 
of jue p(A). This definition has several important properties: first we can 
define A as a continuous map from <r(0t(A)) to the Riemann sphere and 
A sets up a homeomorphism between a(0t(A}) and a(A) u {oo}; secondly, 
if An is any ̂ (^-approximation in the sense of Definition 1, then l(An) -+ 
1(A) for any I e <T(02(A)). 
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Theorem 1 now follows from several remarks: (a) By Definition 2 and 
Theorem 2, 01(C) c 01(A) <§) 01(B) even in the unbounded case, (b) Thus 
G(Q as an element of $£(X ® Y) is {l(C)\l e a(0t(A) ® 01(B)), 1(C) ^ oo}. 
(c) By hypothesis, if A is unbounded, oo is not an isolated point of 
G(A) U {OO} SO G(A) is dense in G(01(A)). (d) Thus, by Theorem 3, G(A) X G(B) 
is dense in G(M(A) ® 01(B)). (e) Finally ran C = {1(c) \ I e G(A) X G(B)} since 
C is continuous and G(A) X G(B) is dense. 
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