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Let K be the p-adic completion of an algebraic number field and denote 
by R its ring of integers. We assume that A is an R-order in the semisimple 
finite dimensional X-algebra A. One of the main problems in the repre­
sentation theory of orders is the classification of those orders A which have 
only a finite number of nonisomorphic indecomposable left A-lattices 

the so-called "orders of finite lattice type." The commutative case has 
been settled independently by Drozd-Roiter [2] and Jacobinski [3]. For 
the general case only partial results are known [1], [4], [5], [7]. 

By Morita equivalence we may assume that A/J(A), where J(A) denotes 
the Jacobson-radical of A, is a finite direct sum of extension fields Rt of ft, 
the residue field of R, say 

ring m 

A/J(A) s 0 a,. 

We choose a finite unramified extension K' of K with ring of integers R! 
such that the residue field ft' of/?' is a splitting field for the minimum poly­
nomial of ftf over ft. Putting A' = R' <g)R A we have 

A7J(A')s0ft'. 

Jacobinski [3, Proposition 1] has shown that A is of finite lattice type if and 
only if A' is of finite lattice type. Therefore we may assume that 

(1) A / J ( A ) s 0 f t , 
i = l 

where ft is the residue field of R. 
We shall classify here those orders of finite lattice type for which n = 1 

—these are called "completely primary totally ramified" (notation CPTR). 
By n(A) we denote the number of nonisomorphic indecomposable left 
A-lattices. 
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THEOREM. Let A be a CPTR-order in A. n(A) < oo if and only if either 
(i) For every CPTR-overorder Q of A we have 

(a) The left ring of multipliers Q! of J(Q) coincides with the right ring 
of multipliers of J(A). 

Put «I = Q'/J(Q\ 
08) dim*(2l) ^ 3, 
(y) dim^(J(3I)/Jr2(3ï)) ^ 1, where J(SU) denotes the Jacobson-radical 

of% 
or 

(ii) A is conjugate to 

( an al2 al3 \ 

n'a21 ^ii + n'a22 ci12 + n'a23\ 

n'a3l n'a32 a n + rc'^/ 
w/iere R' is a totally ramified finite extension of R and it'R' = J(R'). 

REMARK. Qt is the only type of CPTR-order with a finite number of non-
isomorphic indecomposable lattices for which the left ring of multipliers 
of the radical is different from the right ring of multipliers of the radical. 

SOME COMMENTS TO THE PROOF. Let 

aueR\l g i j g 3 

^ = ©(A-)s„ 

where £>, are skewfields over X, and assume that A is a CPTR-order in A 
with n(A) < oo. Then it is shown in [6] and [7] that 

One shows quite easily that for st = 1, 1 ^ i ^ s, the conditions of our 
theorem coincide with the conditions of Drozd-Roiter [2] (cf. also [5], [7]). 

In case s = 1 and s1 = 3 one shows that n(Qi) < oo using some results 
of Kirichenko [4], and with [7] this case is settled. For s = 1 and sx = 2, 
one shows that the conditions of our theorem imply that A is a Bass-order, 
and with [1], this case is settled. Finally for s = 2, Sx = 1 and s2 = 2, one 
has to do some computations (similar to those in [2] and [5]) to conclude 
that our conditions are sufficient for n(A) < oo. 

REMARK. Let A be any order satisfying (1). Let 1 = £ et be the decom­
position of 1 e A into primitive orthogonal idempotents. Then Qf = ^Ae,-
is a CPTR-order and n(A) < oo implies n(Qf) < oo and so Qt is known. 
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