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1. Notation. Let X be a completely regular Hausdorff space and
E a (real or complex) locally convex Hausdorff space. F(X, E) is the
vector space of all mappings from X into E, and C(X, E) is the vector
subspace of all such mappings that are continuous. B,(X, E) is the
vector subspace of F(X, E) consisting of those bounded f that vanish
at infinity. The vector subspace C(X, E)YN\B.,(X, E) is denoted by
Co(X, E). If X is locally compact, %(X, E) will denote the subspace
of C(X, E) consisting of those functions that have compact support.
The corresponding spaces for E=R or C are written omitting E.
A weight v on X is a nonnegative upper semicontinuous function on
X. A directed family of weights on X is a set of weights on X such
that given #, vEV and A=0 there is a wE W such that M\, M= w.
If U and V are two directed families of weights on X and for every
uE U there is a v& V such that u <v, we write US V. If Vis a directed
family of weights on X, the vector space of all fE€ F(X, E) such that
9fEBL(X, E), for any v& V, is denoted by FV (X, E) and is called
a weighted function space. On FV_(X, E) we shall consider the
topology determined by all the seminorms f—sup {v(x)p(f(x)) xeX }
where v& V and 2 is a continuous seminorm on E. CV(X, E) will
denote the subspace FV. . (X, EYN\C(X, E), equipped with the in-
duced topology. The weighted function spaces CV,(X, E) will be
called Nachbin spaces.

2. Completeness properties of Nachbin spaces [6]. If for every
xEX there is a weight & U such that u(x) >0, we write U>0.

LeMMA. If E is complete and U>0, then FU (X, E) is complete.

THEOREM 1. Suppose that E is complete, and U and V are fwo
directed families of weights on X with USV. If V>0 on X and
CU.(X, E) is closed in FU,(X, E), the Nachbin space CV (X, E)
is complete.
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In case E is R or C, the above theorem was obtained by Summers,
under the hypothesis that U>0 on X. (See Theorem 3.6 of [10].)

THEOREM 2. Suppose that E is complete and U and V are two
directed families of weights on X with USV. If V>0 on X and
CU.(X, E) is quasi-complete, the Nachbin space CV (X, E) is quasi-
complete.

3. Dual spaces [6]. Throughout this paragraph X will be a
locally compact Hausdorff space. In this case, for any set of weights
V on X, the space X(X, E) is densely contained in CV (X, E). In
fact, even X(X)Q®E is densely contained in CV.(X, E). Let E,
denote the topological dual of E endowed with the topology ¢(E’, E).
An E;-valued bounded Radon measure # on X is a continuous linear
mapping # from XK(X) into E, when X(X) is endowed with the
topology of uniform convergence on X. Following Grothendieck [4],
an E}-valued bounded Radon measure % on X is called ¢ntegral if the
linear form L defined over X(X) ® E by L(Z ;) = Z (s, u(hs))
is continuous in the topology induced by C.(X, E), in which case it
can be uniquely continuously extended to C(X, E). Let LEC,(X, E)’;
if we define u(¢) for each pEX(X) by (v, u(d))=L(@®y) for all
yEE, then u is an Ej-valued bounded Radon measure. The trans-
pose %' of u is a linear map from E into My(X), the space of all
bounded Radon measures on X. For every y& E there corresponds a
unique regular Borel measure u, such that p,(B) =(u'(y), xs), for all
Borel subsets B of X. There exists a continuous seminorm p on E and
a constant k>0 such that | L(f)| Sk|fl|, for all fEC.(X, E). Hence
| (v, @) =|L@®y)| =kp()|¢||e. Thus, the bounded Radon
measure #’(y) has norm ”u' (y)” <kp(y), and the corresponding Borel
measure u, is such that lu,,(B)I é”u,,” <kp(y). This shows that, for
a fixed Borel subset B(CX, the map y—u,(B) belongs to E’. Call this
map u(B). The set function B—u(B), defined on the o-ring of all
Borel subsets of X and with values on E’, is countably additive. For
any finite families {Bi}iEI of disjoint Borel subsets of X, whose
union is X, and {y.-} «er of elements of E with p(y;) =1 for each 1€ 1,
we have

*) 2 (3, w(BY) | S E.
€I
An E/-valued bounded Radon measure # on X such that the cor-
responding set function u satisfies (*) for some continuous seminorm
p on E and some constant k>0 is said to have finite p-semivariation.
On the other hand, following Dieudonné [2], an E-valued bounded
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Radon measure on X is said to be p-dominated if there is a positive
bounded Radon measure u on X such that ](y, u(@®))| =u(o)p®)
for all yEE and ¢ €% (X). The arguments contained in Singer [9]
and Céc [1] can be extended to prove the following:

LEMMA. Let u be an El-valued bounded Radon measure on X. The
following are equivalent:

(a) u s integral;

(b) u s p-dominated, for some continuous seminorm p on E;

(c) u has finite p-semivariation, for some continuous seminorm p
on E.

We denote by M;(X, E’) the vector space of all E/-valued bounded
Radon measures on X which satisfy (a) or (b) or (c).

THuEOREM 3. Let CV (X, E) be a Nachbin space. Then VMy(X, E’)
s linearly isomorphic to CV (X, E)’.

4. Bishop’s generalized Stone-Weierstrass theorem [7]. If 4 is
a subalgebra of C(X), a subset KCX is said to be antisymmetric for
A if, for fE A, the restriction f | K being real-valued implies that f I K
is constant. Every antisymmetric set for 4 is contained in a maximal
one, and the collection &4 of maximal antisymmetric sets for 4 forms
a closed, pairwise disjoint covering of X (Glicksberg [3]). The follow-
ing form of Bishop’s generalized Stone-Weierstrass theorem is valid
for Nachbin spaces (X is as in §3).

THEOREM 4. Let VC CH(X) and let A be a subalgebra of C(X) such
that every g A is bounded on the support of every v&EV. Let W be a
vector subspace of CV (X, E) which is an A-module. Then f& CV (X, E)
is in the closure of W if and only if f| K is in the closure of W|K in
CV.(K, E) for each K& X 4.

If E is R or C the hypothesis VC C*(X) can be strengthened to
V=C*H(X). If A is selfadjoint, the conclusion of Theorem 4 is that
W is localizable under 4 in CV,(X) (see Definition 4, Nachbin [5]).
Let CV,(X, E) be an A-module, where A4 satisfies the hypothesis of
Theorem 4 and its maximal antisymmetric sets are sets reduced to a
point, (e.g., C3(X), the algebra of all bounded continuous complex-
valued functions). Under this hypothesis the following spectral
synthesis result holds.

THEOREM 5. Every proper closed A-submodule WC CV (X, E) is
contained in some closed A-submodule of codimension one in CV (X, E)
and s the intersection of all proper closed A-submodules of codimension
one in CV(X, E) which contain it.
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5. Dieudonné theorem for density in tensor products of Nachbin
spaces [8]. Let X and ¥ be two completely regular Hausdorff spaces
and V and W two directed families of weights on X and Y respec-
tively. Let VX W denote the set of all functions (x, ¥)v(x)w(y) on
X X Y. Let A be a locally convex topological algebra and let E and
F be two locally convex spaces which are topological modules over
A. Then EQ® 4F is defined to be the quotient space (EQ® F)/D, where
EQ® F has the projective tensor product topology and D is the closed
linear span of the elements of the form eu®v—u®av, where aE4,
uCE, v&F. If fECV (X, E) and g&CW,(Y, F), then f® 4 g belongs
to C(VXW)(XXY, EQ4F), where f®4g denotes the map
(2, y)—f(x) @4 2(9).

THEOREM 6. The vector subspace of all finite sums of mappings of
the form f@a g, where fECV (X, E) and gECW (Y, F), is dense in
C(VXW)o(X XY, EQ4 F).
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