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1. Notation. Let X be a completely regular Hausdorff space and 
E a (real or complex) locally convex Hausdorff space. F(X, E) is the 
vector space of all mappings from X into E, and C(X, E) is the vector 
subspace of all such mappings that are continuous. B*>(X, E) is the 
vector subspace of F(X, E) consisting of those bounded ƒ that vanish 
at infinity. The vector subspace C(X, E)r\Bo0(Xi E) is denoted by 
Coo(X, E). If X is locally compact, 3C(X, E) will denote the subspace 
of C(X3 E) consisting of those functions that have compact support. 
The corresponding spaces for E — R or C are written omitting E. 
A weight v on X is a nonnegative upper semicontinuous function on 
X. A directed family of weights on X is a set of weights on X such 
that given u, v(EV and X^O there is a wÇzW such that \u, \v^w. 
If U and V are two directed families of weights on X and for every 
uG U there is a.vG V such th&tu^v, we write U^ V. If F is a directed 
family of weights on X, the vector space of all ƒ G F(X, E) such that 
vfÇ~Bx(X, £ ) , for any flG V, is denoted by FV^(X9 E) and is called 
a weighted function space. On FV^{Xy E) we shall consider the 
topology determined by all the seminorms ƒ—>sup {v(x)p(f(x)) ; x(EX} 
where vÇzV and p is a continuous seminorm on E. CV*>{X, E) will 
denote the subspace FV«>(X, E)C\C{X1 £ ) , equipped with the in­
duced topology. The weighted function spaces CVW(X, E) will be 
called Nachbin spaces. 

2. Completeness properties of Nachbin spaces [6]. If for every 
x G Z there is a weight w £ U such that u(x)>0, we write Z7>0. 

LEMMA. If E is complete and Z7>0, then FU^{Xy E) is complete. 

THEOREM 1. Suppose that E is complete, and U and V are two 
directed families of weights on X with U^V. If V>0 on X and 
CU„(X, E) is closed in FU^X, £ ) , the Nachbin space CV„(X, E) 
is complete. 
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In case E is R or C, the above theorem was obtained by Summers, 
under the hypothesis that U>0 on X. (See Theorem 3.6 of [l0].) 

THEOREM 2. Suppose that E is complete and U and V are two 
directed families of weights on X with U^V. If V>0 on X and 
CUooiX, E) is quasi-completey the Nachbin space CV^X, E) is quasi-
complete. 

3. Dual spaces [ó]. Throughout this paragraph X will be a 
locally compact Hausdorff space. In this case, for any set of weights 
V on X, the space 3Z(Xt E) is densely contained in CVW(X, E) . In 
fact, even 3Z(X)®E is densely contained in CF00(X, E) . Let E'w 

denote the topological dual of E endowed with the topology Ö"(E', E) . 
An E'w-valued bounded Radon measure u on X is a continuous linear 
mapping u from 3Z(X) into E'w when 3Z(X) is endowed with the 
topology of uniform convergence on X. Following Grothendieck [4], 
an E£,-valued bounded Radon measure u on X is called integral if the 
linear form L defined over 3Z(X) ® E by L(^2 <l>i<g)yi) = X) (?*» u((l>i)) 
is continuous in the topology induced by C^X, E) , in which case it 
can be uniquely continuously extended to CW{X, E) . Let L £ C^X, E)' ; 
if we define u(<j>) for each <££3C(X) by (y> u{<j>)) = L{<i>®y) for all 
y(EE, then u is an E'w-valued bounded Radon measure. The trans­
pose u' of u is a linear map from E into Mi(X), the space of all 
bounded Radon measures on X. For every y(E.E there corresponds a 
unique regular Borel measure jxv such that \xv(B) = {u'(y), XB), for all 
Borel subsets B of X. There exists a continuous seminorm p on E and 
a constant k>0 such that | i ( / ) | ^*| | / | |p for all fEC*(Xt E) . Hence 
|<3S *(0)>| = 1 ^ ( 0 ® ^ | ^*£(30|M|oo. Thus, the bounded Radon 
measure u (y) has norm ||w'(^)|| ^kp(y)y and the corresponding Borel 
measure fiv is such that |/z„(B)| ^| |MÎ/| | èkp(y). This shows that, for 
a fixed Borel subset BC.X, the map y*~*iiv(B) belongs to E' . Call this 
map fi(B). The set function B*-*ix(B), defined on the cr-ring of all 
Borel subsets of X and with values on E' , is countably additive. For 
any finite families {Bi}i<=i of disjoint Borel subsets of X, whose 
union is X, and {yi}iei of elements of E with p(yt) S1 for each i£JT, 
we have 

(*) E<y«,M<W g *. 

An E£,-valued bounded Radon measure u on X such that the cor­
responding set function /x satisfies (*) for some continuous seminorm 
p on E and some constant k > 0 is said to have finite p-semivariation. 
On the other hand, following Dieudonné [2], an E'w-valued bounded 
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Radon measure on X is said to be p-dominated if there is a positive 
bounded Radon measure /x on X such that | {y, u{<j>))\ ^kn(\<j>\)p(y) 
for all yÇzE and <££3C(X). The arguments contained in Singer [9] 
and Câc [ l ] can be extended to prove the following: 

LEMMA. Let u be an E'w-valued bounded Radon measure on X. The 
following are equivalent : 

(a) u is integral] 
(b) u is p-dominated, for some continuous seminorm p on E; 
(c) u has finite p-semivariation, for some continuous seminorm p 

on E. 

We denote by Mb(X, Ef) the vector space of all E'w-valued bounded 
Radon measures on X which satisfy (a) or (b) or (c). 

THEOREM 3. Let CV^X, E) be a Nachbin space. Then VMh(X, Er) 
is linearly isomorphic to CV^X, E)f. 

4. Bishop's generalized Stone-Weierstrass theorem [7]. If A is 
a subalgebra of C(X), a subset KQX is said to be antisymmetric for 
A if, for ƒ £ -4 , the restriction ƒ \K being real-valued implies that ƒ | K 
is constant. Every antisymmetric set for A is contained in a maximal 
one, and the collection 3ZA of maximal antisymmetric sets for A forms 
a closed, pairwise disjoint covering of X (Glicksberg [3]). The follow­
ing form of Bishops generalized Stone-Weierstrass theorem is valid 
for Nachbin spaces (X is as in §3). 

THEOREM 4. Let VCC+(X) and let A be a subalgebra of C{X) such 
that every gÇzA is bounded on the support of every vÇzV. Let W be a 
vector subspace ofCV^X, E) which is an A-module. ThenfÇzCV^X, E) 
is in the closure of W if and only if f\ K is in the closure of W\ K in 
CV„(K, E) for each KGKA. 

If E is R or C the hypothesis V(ZC+(X) can be strengthened to 
VSC+{X). If A is selfadjoint, the conclusion of Theorem 4 is that 
W is localizable under A in CVW{X) (see Definition 4, Nachbin [5]). 
Let CFoo(X, E) be an A -module, where A satisfies the hypothesis of 
Theorem 4 and its maximal antisymmetric sets are sets reduced to a 
point, (e.g., Cb(X), the algebra of all bounded continuous complex-
valued functions). Under this hypothesis the following spectral 
synthesis result holds. 

THEOREM 5. Every proper closed A-submodule WQCV^X, E) is 
contained in some closed A-submodule of codimension one in CV^X, E) 
and is the intersection of all proper closed A -submodules of codimension 
one in CVw{Xt E) which contain it. 
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5. Dieudonné theorem for density in tensor products of Nachbin 
spaces [8]. Let X and F be two completely regular Hausdorff spaces 
and V and W two directed families of weights on X and Y respec­
tively. Let VXW denote the set of all functions (xy y)*-*v(x)w(y) on 
I X K Let A be a, locally convex topological algebra and let E and 
F be two locally convex spaces which are topological modules over 
A. Then E® AF is defined to be the quotient space (E®F)/D, where 
E®F has the projective tensor product topology and D is the closed 
linear span of the elements of the form au®v — u®av, where a(E.A, 
uGE, vGF. IifeCV„(X,E) and gGCW^Y, F), thenf®A g belongs 
to C(VXW)00(XXY, E®AF)t where f®Ag denotes the map 
(x, y)*-»f(x)®Ag(y). 

THEOREM 6. The vector subspace of all finite sums of mappings of 
the form f ® A g} where fÇ.CVw{Xy E) and gÇzCW«>(Y, F), is dense in 
C(VXW)00(XXY,E®AF). 
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