WEIGHTED APPROXIMATION OF CONTINUOUS FUNCTIONS¹

BY JOÃO B. PROLLA

Communicated by Felix Browder, June 17, 1971

- 1. **Notation.** Let X be a completely regular Hausdorff space and E a (real or complex) locally convex Hausdorff space. F(X, E) is the vector space of all mappings from X into E, and C(X, E) is the vector subspace of all such mappings that are continuous. $B_{\infty}(X, E)$ is the vector subspace of F(X, E) consisting of those bounded f that vanish at infinity. The vector subspace $C(X, E) \cap B_{\infty}(X, E)$ is denoted by $C_{\infty}(X, E)$. If X is locally compact, $\mathfrak{K}(X, E)$ will denote the subspace of C(X, E) consisting of those functions that have compact support. The corresponding spaces for $E = \mathbf{R}$ or \mathbf{C} are written omitting E. A weight v on X is a nonnegative upper semicontinuous function on X. A directed family of weights on X is a set of weights on X such that given $u, v \in V$ and $\lambda \ge 0$ there is a $w \in W$ such that $\lambda u, \lambda v \le w$. If U and V are two directed families of weights on X and for every $u \in U$ there is a $v \in V$ such that $u \le v$, we write $U \le V$. If V is a directed family of weights on X, the vector space of all $f \in F(X, E)$ such that $vf \in B_{\infty}(X, E)$, for any $v \in V$, is denoted by $FV_{\infty}(X, E)$ and is called a weighted function space. On $FV_{\infty}(X, E)$ we shall consider the topology determined by all the seminorms $f \mapsto \sup \{v(x) p(f(x)); x \in X\}$ where $v \in V$ and p is a continuous seminorm on E. $CV_{\infty}(X, E)$ will denote the subspace $FV_{\infty}(X, E) \cap C(X, E)$, equipped with the induced topology. The weighted function spaces $CV_{\infty}(X, E)$ will be called Nachbin spaces.
- 2. Completeness properties of Nachbin spaces [6]. If for every $x \in X$ there is a weight $u \in U$ such that u(x) > 0, we write U > 0.

LEMMA. If E is complete and U>0, then $FU_{\infty}(X, E)$ is complete.

THEOREM 1. Suppose that E is complete, and U and V are two directed families of weights on X with $U \subseteq V$. If V > 0 on X and $CU_{\infty}(X, E)$ is closed in $FU_{\infty}(X, E)$, the Nachbin space $CV_{\infty}(X, E)$ is complete.

AMS 1970 subject classifications. Primary 46E10, 46E40; Secondary 46G10.

Key words and phrases. Continuous vector-valued functions, weights, Nachbin spaces, completeness, vector-valued bounded Radon measures, Bishop's generalized Stone-Weierstrass theorem, tensor product of topological modules.

¹ This research was supported in part by NSF Grant GP-22713.

In case E is R or C, the above theorem was obtained by Summers, under the hypothesis that U>0 on X. (See Theorem 3.6 of [10].)

THEOREM 2. Suppose that E is complete and U and V are two directed families of weights on X with $U \le V$. If V > 0 on X and $CU_{\infty}(X, E)$ is quasi-complete, the Nachbin space $CV_{\infty}(X, E)$ is quasi-complete.

3. Dual spaces [6]. Throughout this paragraph X will be a locally compact Hausdorff space. In this case, for any set of weights V on X, the space $\mathfrak{K}(X, E)$ is densely contained in $CV_{\infty}(X, E)$. In fact, even $\mathfrak{K}(X) \otimes E$ is densely contained in $CV_{\infty}(X, E)$. Let E'_{w} denote the topological dual of E endowed with the topology $\sigma(E', E)$. An E'_{w} -valued bounded Radon measure u on X is a continuous linear mapping u from $\mathfrak{K}(X)$ into E'_w when $\mathfrak{K}(X)$ is endowed with the topology of uniform convergence on X. Following Grothendieck [4], an E'_{w} -valued bounded Radon measure u on X is called *integral* if the linear form L defined over $\mathcal{K}(X) \otimes E$ by $L(\sum \phi_i \otimes y_i) = \sum \langle y_i, u(\phi_i) \rangle$ is continuous in the topology induced by $C_{\infty}(X, E)$, in which case it can be uniquely continuously extended to $C_{\infty}(X, E)$. Let $L \in C_{\infty}(X, E)'$; if we define $u(\phi)$ for each $\phi \in \mathcal{K}(X)$ by $\langle y, u(\phi) \rangle = L(\phi \otimes y)$ for all $y \in E$, then u is an E'_w -valued bounded Radon measure. The transpose u' of u is a linear map from E into $M_b(X)$, the space of all bounded Radon measures on X. For every $y \in E$ there corresponds a unique regular Borel measure μ_y such that $\mu_y(B) = \langle u'(y), \chi_B \rangle$, for all Borel subsets B of X. There exists a continuous seminorm p on E and a constant k>0 such that $|L(f)| \leq k||f||_p$ for all $f \in C_{\infty}(X, E)$. Hence $|\langle y, u(\phi) \rangle| = |L(\phi \otimes y)| \le k p(y) ||\phi||_{\infty}$. Thus, the bounded Radon measure u'(y) has norm $||u'(y)|| \le kp(y)$, and the corresponding Borel measure μ_y is such that $|\mu_y(B)| \le ||\mu_y|| \le kp(y)$. This shows that, for a fixed Borel subset $B \subset X$, the map $y \mapsto \mu_y(B)$ belongs to E'. Call this map $\mu(B)$. The set function $B \mapsto \mu(B)$, defined on the σ -ring of all Borel subsets of X and with values on E', is countably additive. For any finite families $\{B_i\}_{i\in I}$ of disjoint Borel subsets of X, whose union is X, and $\{y_i\}_{i\in I}$ of elements of E with $p(y_i) \leq 1$ for each $i\in I$, we have

$$\left|\sum_{i\in I}\langle y_i, \mu(B_i)\rangle\right| \leq k.$$

An E'_w -valued bounded Radon measure u on X such that the corresponding set function μ satisfies (*) for some continuous seminorm p on E and some constant k>0 is said to have *finite p-semivariation*. On the other hand, following Dieudonné [2], an E'_w -valued bounded

Radon measure on X is said to be p-dominated if there is a positive bounded Radon measure μ on X such that $|\langle y, u(\phi) \rangle| \leq \mu(|\phi|)p(y)$ for all $y \in E$ and $\phi \in \mathcal{K}(X)$. The arguments contained in Singer [9] and Các [1] can be extended to prove the following:

LEMMA. Let u be an E'_w -valued bounded Radon measure on X. The following are equivalent:

- (a) u is integral;
- (b) u is p-dominated, for some continuous seminorm p on E;
- (c) u has finite p-semivariation, for some continuous seminorm p on E.

We denote by $M_b(X, E')$ the vector space of all E'_w -valued bounded Radon measures on X which satisfy (a) or (b) or (c).

THEOREM 3. Let $CV_{\infty}(X, E)$ be a Nachbin space. Then $VM_b(X, E')$ is linearly isomorphic to $CV_{\infty}(X, E)'$.

4. Bishop's generalized Stone-Weierstrass theorem [7]. If A is a subalgebra of C(X), a subset $K \subset X$ is said to be antisymmetric for A if, for $f \in A$, the restriction $f \mid K$ being real-valued implies that $f \mid K$ is constant. Every antisymmetric set for A is contained in a maximal one, and the collection \mathfrak{K}_A of maximal antisymmetric sets for A forms a closed, pairwise disjoint covering of X (Glicksberg [3]). The following form of Bishop's generalized Stone-Weierstrass theorem is valid for Nachbin spaces (X is as in §3).

THEOREM 4. Let $V \subset C^+(X)$ and let A be a subalgebra of C(X) such that every $g \in A$ is bounded on the support of every $v \in V$. Let W be a vector subspace of $CV_{\infty}(X, E)$ which is an A-module. Then $f \in CV_{\infty}(X, E)$ is in the closure of W if and only if $f \mid K$ is in the closure of $W \mid K$ in $CV_{\infty}(K, E)$ for each $K \in \mathcal{K}_A$.

If E is R or C the hypothesis $V \subset C^+(X)$ can be strengthened to $V \leq C^+(X)$. If A is selfadjoint, the conclusion of Theorem 4 is that W is localizable under A in $CV_{\infty}(X)$ (see Definition 4, Nachbin [5]). Let $CV_{\infty}(X, E)$ be an A-module, where A satisfies the hypothesis of Theorem 4 and its maximal antisymmetric sets are sets reduced to a point, (e.g., $C_b(X)$, the algebra of all bounded continuous complex-valued functions). Under this hypothesis the following spectral synthesis result holds.

THEOREM 5. Every proper closed A-submodule $W \subset CV_{\infty}(X, E)$ is contained in some closed A-submodule of codimension one in $CV_{\infty}(X, E)$ and is the intersection of all proper closed A-submodules of codimension one in $CV_{\infty}(X, E)$ which contain it.

5. Dieudonné theorem for density in tensor products of Nachbin spaces [8]. Let X and Y be two completely regular Hausdorff spaces and V and W two directed families of weights on X and Y respectively. Let $V \times W$ denote the set of all functions $(x, y) \mapsto v(x)w(y)$ on $X \times Y$. Let A be a locally convex topological algebra and let E and F be two locally convex spaces which are topological modules over A. Then $E \otimes_A F$ is defined to be the quotient space $(E \otimes F)/D$, where $E \otimes F$ has the projective tensor product topology and D is the closed linear span of the elements of the form $au \otimes v - u \otimes av$, where $a \in A$, $u \in E$, $v \in F$. If $f \in CV_{\infty}(X, E)$ and $g \in CW_{\infty}(Y, F)$, then $f \otimes_A g$ belongs to $C(V \times W)_{\infty}(X \times Y, E \otimes_A F)$, where $f \otimes_A g$ denotes the map $(x, y) \mapsto f(x) \otimes_A g(y)$.

THEOREM 6. The vector subspace of all finite sums of mappings of the form $f \otimes_A g$, where $f \in CV_{\infty}(X, E)$ and $g \in CW_{\infty}(Y, F)$, is dense in $C(V \times W)_{\infty}(X \times Y, E \otimes_A F)$.

REFERENCES

- 1. N. P. Các, Linear transformations on some functional spaces, Proc. London Math. Soc. (3) 16 (1966), 705-736.
- 2. J. Dieudonné, Sur le théorème de Lebesgue-Nikodym. V, Canad. J. Math. 3 (1951), 129-139. MR 13, 448.
- 3. I. Glicksberg, Bishop's generalized Stone-Weierstrass theorem for the strict topology, Proc. Amer. Math. Soc. 14 (1963), 329-333. MR 26 #4165.
- 4. A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16 (1955). MR 17, 763.
- 5. L. Nachbin, Weighted approximation for algebras and modules of continuous functions: Real and self-adjoint complex cases, Ann. of Math. (2) 81 (1965), 289–302. MR 31 #628.
- 6. J. B. Prolla, Weighted spaces of vector-valued continuous functions, Ann. Mat. Pura Appl. (to appear).
- 7. ——, Bishop's generalized Stone-Weierstrass theorem for weighted spaces, Math. Ann. 191 (1971), 283-289.
- 8. ——, The weighted Dieudonné theorem for density in tensor products, Nederl. Akad. Wetensch. Proc. Ser. A. 74 = Indag. Math. 33 (1971), 170-175.
- 9. I. Singer, Sur les applications linéaires intégrales des espaces de fonctions continues. I, Rev. Math. Pures Appl. 4 (1959), 391-401. MR 22 #5883.
- 10. W. H. Summers, A representation theorem for biequicontinuous completed tensor products of weighted spaces, Trans. Amer. Math. Soc. 146 (1969), 121–131. MR 40 #4748.

University of Rochester, Rochester, New York 14627