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In [3] the author defined maps bn' ". U(n)—>fl2C/(w + l) which are 
deformations of the classical Bott homotopy equivalence b:U—>fl2L7 
[ l ] , i.e., the composite U(n)—>Q,2U(n + l)—*&2U is nomotopic to the 
composite U(n)-^U—>Q,2U. The maps bn are natural with respect to 
the inclusions U(k)CU(n) for k^n. The maps bn' may be used to 
define homomorphisms Bn:Tr(U(n))—^irr+2(U(n+l)) as the com­
posite homomorphism 

bn* d~2 

wr(U(n)) -+ TTr(WU(n + 1)) -+ 7rr+2(U(n + 1)). 

The advantage gained by using the maps Bn is that they give informa­
tion on the nonstable homotopy of U(n) not available from the classi­
cal Bott maps, and they agree with the classical results in the stable 
range. For example, the results of [3] show that the map Bn:irr(U(n)) 
—>7Tr+2(C/(w + l)) is an isomorphism for r^2n — 1, and Bn'ir2n(U(n)) 
-+7T2(n+i)(U(n + l)) is a monomorphism. Kenneth Millett has calcu­
lated Bn:T2(n+r)(U(n))-->T2(n+r+l)(U(n+l)) ÎOT f = 2, 3. 

The purpose of this announcement is to describe an application of 
the maps bn' to complex i£-theory. We work throughout in the cate­
gory of finite CW complexes with basepoint. We use Q to denote the 
additive group of rational numbers, and Z to denote the group of 
integers. 

1. The spectrum TU. We use the maps bn' to define a spectrum 
TU by setting TU2k=ttU(k), TU2k+i=U(k) for fc^O, and TUm = point 
for m<0. The maps of the spectrum are 

m, = id: TU2k = 017(*) ->Q17(*) - QTU2k+1 

and 

T2*+i = hi : TU2k+i = U(k) -» &U(k + 1) = QTUu+2. 
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We call TU the nonstable unitary spectrum. 
To compute the homotopy of this spectrum, we use the maps 

Bn:7rr(U(n))—>wr+2(U(n + l)) mentioned above and results about the 
iterates of these maps. 

THEOREM 1. The homotopy groups of TU are as follows 

T2s-i(TU) Ç* Q/Z for s è 0, 

T2s(TU) GË Z for s < 0, 

icJTU) = 0 otherwise. • 

2. Relative spectra and cohomology. A relative spectrum (E, F) 
consists of spectra E and F and inclusion maps FkQEk such that the 
following diagram is homotopy commutative 

F'IF 
ni in 

Ek -—» Ek+i* 

By using the co-exact sequence of pairs 

(X, * ) -> (X, X) -> (CX, X) -> (SX, * ) -> (SX, SX) -» • • • 

and taking direct limits of the exact sequences of homotopy sets 

. . . - > [Sk+1~nX; Ek] -> [CSk~"X, Sk~nX; Ek, Fk] 

- > [Sk~nX; Fk]->[Sk~«X; Ek] -> • • • 

where (2£, F) is a relative spectrum, one obtains an exact cohomology 
sequence similar to the ordinary cohomology coefficient sequence. 

THEOREM 2. If (E, F) is a relative spectrum, there is a long exact 
sequence ( — <*> < n < <*> ) , 

• >hn-KX)E)J-^hn-l(X;E, F) ->hn(X; F) ^h»(X;E) ~+ • • •. D 

The unitary spectrum BU is defined by BU2k = &U and BUM+I^ U 
with maps id : BU2k = 0£/->ŒU = tiBU2k+i and 6 : BU2k+i = U->WU 
=£2J3£/2&+2, where è is the classical Bott homotopy equivalence. We 
easily check that {BU, TU) is a relative spectrum and thus obtain 

COROLLARY 3. There is a long exact cohomology sequence 

i* & 
• • >->h»-l(X;BU) ^ hn~\X) BU, TU) -> A?(X; 777) 

^hn(X;BU)-+ • • •. D 
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Homotopy groups of a relative spectrum (E, F) are defined in the 
usual way, and there is a long exact sequence of homotopy groups of 
spectra involving the homotopy groups Trn(E, F). 

For the relative spectrum (BU, TU), a calculation shows that the 
following result holds. 

THEOREM 4. The homotopy groups of (BU, TU) are as follows 

TU(BU, TU) &Q fors^O, 

Tr(BU, TU) = 0 otherwise. 

Moreover, the exact sequences 0—>T2S(BU)~->TT2S(BU, TU)-+K2s-i(TU)—>0 
for s^O and 0-^7T2S(TU)—*T2S(BU)—»0 for s<0 are just the exact se­
quences 0->Z—*Q-£>Q/Z->0 and 0—>Z--»Z—>0, respectively. • 

3. Interpretation of the exact cohomology sequence. In the co­
homology sequence, the terms hn(X\ BU)=Kn(X), reduced complex 
iT-theory. (Recall we are working in the category of based com­
plexes.) 

The groups hn(X; BU, TU) and the maps j*:hn(X; BU) 
—>hn(X) BU, TU) are determined by the following proposition. Let 
H* denote ordinary singular cohomology. 

PROPOSITION 5. For each n, hn(X; BU, r c / ) s S r * o Hn+**(X; Q). 
The map j * is the truncated (from below) Chern character 

j+ = ch' = £ chn+2r:K"(X) -> £ S«+*(X; Ö). D 

Note that for » ^ 1 , ch*' — ch, the Chern character. This proposi­
tion is proved using theorems about generalized cohomology theories 
derived from the spectral sequence. See Dyer [2, Chapter I ] . 

Let Tn(X) = hn(X; TU). I t remains to analyze Tn(X) and the maps 
û: T»(X)->È*(X), p:hn(X; BU, TU)->Tn+1(X). An easy calculation 
with the Chern character and the truncated Chern character estab­
lishes 

PROPOSITION 6. For each n, Tn+HX) = y£r*oË*+»(X)®Q/Z 
+ Tn+HX). The map $ has cohernel isomorphic to J2rzoHn+2r(X)®Q/Z. 
The map i* is a monomorphism Tn+1(X)—>Kn+1(X). • 

REMARKS, (i) Although Im j8s]£r*o Hn+2r(X)®Q/Z, the map /3 is 
not l ® p : 2 > i 0 3n+2r(X)®Q->Y,r*o Hn+2r(X)®Q/Z where p is the 
projection Q—^Q/Z. 

(ii) The direct sum splitting of Tn(X) is not natural with respect 
to maps f:X—>Y, as can be seen by using the inclusion map 
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(iii) The long exact cohomology sequence decomposes into exact 
sequences of length four 

0 -> Tn(X) -> K*(X) C~> X) Hn+2'(X) Q) -> E Bn+2r(X) ® Q/Z ~>0 

although this is not a natural decomposition. 
Let tors(G) denote the torsion subgroup of G. An analysis of Tn(X) 

yields 

PROPOSITION 7. (i) For » ^ 1 , f n (X)^ tors ( i£ n (X)) . 
(ii) / ^ r K t t ^ d i m X, 

Î*(X) ^ tors(i£*(X)) 0 25 w +^(X) / to rs (5 w + 2 r (X)) . 
r<0 

(iii) For dim X < w , Tn(X)^Kn(X). Q 

In this proposition, dim X may be interpreted as the rational singu­
lar cohomological dimension. 

The preceding propositions are collected in the following 

THEOREM 8. For each finite CW complex X, there is a long exact 
sequence (— <*> <n< <*>), 

ch' 

• • -> ]C 3n~i+2r(x) ® Q/z e Tn{x) -> #»(x) -> X) Sn+2r(X) Q) 
^ ]T Hn+2r(X) ® Q/Z @ Tn+1(X) -» Z»+ 1(^) - * • • • • D 

rèO 

Detailed proofs, applications, and extensions of these results will 
appear elsewhere. 
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