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Introduction. Origins of ergodic theory. Our results will be con­
cerned with 1-1 invertible transformations, 7\ of a measure space X, 
of total measure 1, where T and T*1 transform each measurable set 
onto a measurable set of the same measure. 

We will be concerned with the behavior of T only up to sets of 
measure 0. Tha t is, we will say that Tx acting on Xi is isomorphic to 
r 2 acting on X2 if we can find X i C ^ i and X2QX2 of measure 1 and 
invariant under T\ and T2t respectively, and if there is an invertible, 
measure-preserving transformation \p of X\ onto X2 such that for all x 
in Xi we have \f/Ti(x) = T$p{x). 

Measure-preserving transformations arise in many different con­
texts, and I will now describe three of the more important ones. 

(1) Automorphisms of compact groups. Any continuous automorph­
ism of a compact group is a measure-preserving transformation with 
respect to Haar measure (see Halmos, Lectures in ergodic theory). 

(2) Random processes. A stationary process can be thought of as a 
box that prints out one letter for each unit of time where the probabil­
ity of a given letter being printed out may depend on the letters 
printed out in the past but is independent of the time (that is, the 
mechanism in the box does not change). 

EXAMPLE 1. The box contains a roulette wheel. We spin the wheel 
once each unit of time and print out the result. 

EXAMPLE 2. The box contains a roulette wheel. We look at all 
possibilities for three consecutive spins and divide these into two 
classes. Now each time we spin the wheel we look at the last three 
spins and print out a 1 if they fall in the first class and a 2 if they fall 
in the second class. 

EXAMPLE 3. A teleprinter. This prints out letters where the prob­
ability of a given letter depends on what has already been printed 
(many possibilities will have probability 0 because they will not 
make sense). 
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The mathematical model for a process is a transformation T acting 
on X and a partition P of X. The reason for this is the following: We 
know all about the process if we know the probability of its printing 
out any given finite sequence. Now for each point xÇzX corresponds 
a sequence whose ith term is the atom of P containing T*x. If we 
think of the measure on X as a probability, then P} T gives us the 
probability of any finite sequence. Furthermore, the probabilities of 
finite sequences determine the pair P t T since the measure of the 
atoms of yinT

{P is determined. 
The Birkhoff ergodic theorem implies that if we look at a process 

long enough each fixed string of letters will occur with a fixed fre­
quency. If T is ergodic (the only invariant sets have measure 0 or 1), 
this frequency will be the probability of the string. (We will only con­
sider ergodic processes. Any other process will be some sort of 
average of ergodic ones.) 

(3) Mechanical systems. We can represent the state of a mechanical 
system as a point in a high-dimensional Euclidean space (the phase 
space). For example, if our system is a gas confined in a box, the state 
of the gas can be described by giving the x, yy js-components of the 
position and momentum of each molecule. If there are n molecules, 
the dimension of the phase space is 6n. If we let one unit of time 
elapse, each point in phase space will move to another point. This 
gives us a transformation of the phase space and there is a theorem of 
Liouville that asserts that this transformation preserves Lebesgue 
measure. 

Studying exactly what happens to a mechanical system is in gen­
eral too complicated, and various mathematicians, including Birkhoff 
and von Neumann, in an at tempt to make the problem more treat­
able by ignoring motions that occurred with probability 0, were led 
to studying the measure-preserving transformations associated with a 
mechanical system. One of the aims of ergodic theory is to determine 
(up to isomorphism) the measure-preserving transformations associ­
ated with specific mechanical systems. 

Abstract ergodic theory : Bernoulli shifts. There is a class of trans­
formations that play a central role in ergodic theory, namely the 
Bernoulli shifts. The reason for this is partly because they are in a 
certain sense the simplest examples of measure-preserving transfor­
mations and partly because of their role in applications. 

Definition of Bernoulli shifts. If we are given positive numbers 
Pu ' ' ' » Pkj where 23*-i £»,s=l> w e define the Bernoulli shift 
(Pu ' * • , pk) as follows: Let Y be a set with k elements and let us give 
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the ith element measure pi. Let Yi, — <x> < i < + °°, be copies of F 
and let X be the product of the F» with the product measure. Thus 
each point in X is a doubly infinite sequence of points in F. T will act 
by shifting each of the above sequences. Tha t is, T will take the 
sequence {yl } into the sequence {yl } where y I ~yi+v 

There is a theorem that says that any invertible, ergodic, measure-
preserving transformation can be obtained if we modify the above 
construction by taking F to be countable and by taking some other 
measure invariant under the shift, instead of the product measure. 
Thus Bernoulli shifts are simplest in the sense that the product mea­
sure is the simplest measure invariant under the shift. 

Let P be the partition of X into k sets which is obtained as follows : 
{yi} and {yl } will be in the same atoms of P if yo = yó • I t is easy to 
see that P , T corresponds to the process of spinning a roulette wheel 
with k slots of widths pi. Thus from the probability point of view 
Bernoulli shifts correspond to independent processes. 

There is a more geometric way of describing Bernoulli shifts, which 
goes as follows: We will start by describing the Bernoulli shift ( | , | ) . 
Let X be the unit square. T will send the point (x, y) into (2x, %y) if 
0Sx<% and (2# — 1 , f;y+J) if | ^ x < l . We can picture T as follows: 
We first squeeze down the unit square and we then translate the part 
that has left the square back onto the part of the square that is now 
empty. 

b 

a 

We describe the Bernoulli shift (pi, • • • , pk) in a similar way. X is 
the unit square. Divide X into k rectangles whose height is 1 and 
whose base is an interval of length pi (l^i^k). Squeeze the height 
of the ith. rectangle by pi and expand its width by 1/pi. Now re­
assemble these pieces by putting the first on the bottom, the second 
on top of it, the third on top of that, etc. 

There is a third way to describe Bernoulli shifts. T is isomorphic 
to the Bernoulli shift (pi, • • • , pk) if and only if there is a partition P 
into sets Pi , • • • , Pk such that the measure of P{ is pi and such that : 

(1) the T*P are independent and 
(2) the T*P generate. 
2 This nice type of picture was suggested in [26]. 
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(1) and (2) mean the following: (1) means that if we take a finite 
number of the TlP and pick one atom in each of the T*P, then the 
measure of the intersection of these atoms will equal the product of 
their measures. (2) means that if E is a measurable set, then, given e, 
we can find an n and a set E1 in the algebra of sets generated by the 
TlP, — n^i^n, such that the symmetric difference between E and 
E' is less than e. If X is a Lebesgue space (isomorphic to the unit in­
terval or the unit square with Lebesgue measure), then the above 
definition agrees with our previous definitions. 

The isomorphism problem. When Halmos wrote his book on ergodic 
theory [ l ] one of the main problems was the following: Are all 
Bernoulli shifts isomorphic? In particular, is the Bernoulli shift (J, J) 
isomorphic to the Bernoulli shift (\, f, \) ? Up to this point there were 
various properties of transformations that were known, and because 
of these a large number of transformations could be distinguished 
from one another (properties such as ergodicity, mixing, weak mix­
ing). None of these properties, however, distinguished any two 
Bernoulli shifts (two Bernoulli shifts even induced isomorphic uni­
tary operators). 

The breakthrough in this area came when Kolmogorov introduced 
[3 ] a new invariant called entropy, which was motivated by Shan­
non's work [4] on information theory. This invariant which I will 
describe below was easy to compute for the Bernoulli shift 
(pi, • • • , pk) and is simply — X X 1 Pi l°g Pi- (Thus the Bernoulli 
shift (J, | ) is not isomorphic to the Bernoulli shift Q, £, f).) 

The entropy of a transformation is defined as follows : We first de­
fine the entropy, H(P), of a partition P , whose ith set has measure pi 
as — ^2pi log pi. (If the TlP were independent, then for all n large 
enough the size of most of the atoms in the partition V?„i TlP is ap­
proximately \R{P)n. This follows from the law of large numbers.) 
We now define the entropy of P relative to T, H(P, T) as 
lim min-*, (l/n) if(V? T*P). Actually the limit exists. (There is a 
theorem due to Shannon and McMillan that says that for all n large 
enough the size of most of the atoms in V?=1 T*P is roughly the same 
and approximately equal to ^H(p>T^,) 

We now define H(T) as sup H(P, T) where sup is taken over all 
finite partitions. At first glance one would expect that H(P, T) would 
be very large if P had a large number of atoms and that H(T) would 
always = 00. To get a feeling why this is not so note that 

H(P, T) = lim — H[ V r*PJ 
n~>« ft \ 1 / 
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should equal 

H( V T*P, T) = Hm — ïï( V T{PY 

This same argument suggests that sup H(P, T) should be attained if 
the T{P generate. This is actually true (it would be very easy if each 
B were actually in some Vün T{P). I t is this last fact that enables us 
to calculate the entropy for Bernoulli shifts. 

Let us now return to the isomorphism problem for Bernoulli shifts. 
There are still quite a lot of Bernoulli shifts with a given entropy. 
Are these all the same? Is there another property yet to be discovered 
that will distinguish some of these? Are they all different? Mesalkin 
[ó] showed that the answer to the last question was no by showing 
that the Bernoulli shifts ( i , J, }, \) and ( | , | , | , f, | ) were isomorphic. 

Sinai [5] proved a beautiful and deep theorem along these lines, 
namely: If H(T) — — 23 Pi l°g Ph then we can find a partition, P , 
whose ith set has measure pi such that the TlP are independent. 
(The TlP may not generate. If this could be shown, under the addi­
tional hypothesis that T is a Bernoulli shift, then all Bernoulli shifts 
of the same entropy would be isomorphic.) 

We now know [7] 

THEOREM. All Bernoulli shifts with the same entropy are isomorphic. 

Various elaborations of the proof of the above theorem yield the 
following results. 

Generalized Bernoulli shifts. In [7] we only consider the case where 
P has a finite number of elements. Smorodinsky showed [8] that the 
argument in [7] could be modified to include the case where P is 
countably infinite and ^ — pi log pi< oo. In [9] we show that any 
two Bernoulli shifts for which ] £ — pi log £»= <*> are isomorphic. Ac­
tually, in [9] we prove a little more, and to state this result we 
will first define a generalized Bernoulli shift as follows. Let S be 
a Lebesgue measure space of total measure 1. Let X be the prod­
uct of a doubly infinite sequence of copies of 5. For our measure on 
X we will take the product measure. We define 7\ as before, to be the 
shift operator. Our result is that any two generalized Bernoulli shifts 
with the same (finite or infinite) entropy are isomorphic. [Note that 
if the measure on 5 has a continuous part, then the entropy is infinite. 
Otherwise, 5 has a countable number of points (or, after throwing 
away a set of measure 0, 5 has a countable number of points).] 

Factors of Bernoulli shifts. In [lO] we show tha t a factor of a 
Bernoulli shift is a Bernoulli shift. By this we mean the following: 
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Let T be a Bernoulli shift (or generalized Bernoulli shift). Let Ofc be a 
(7-algebra of measurable sets invariant under T. We can then find a 
partition P (finite if the entropy of T is finite, otherwise countable) 
such that the T*P are independent and generate d. 

Bernoulli flows. Classifying the Bernoulli shifts gives information 
about them which at first glance one would not expect to get. For 
example, it was not previously known if the 2-shift had a square root. 
We can now show it has a square root as follows. Let T be a Bernoulli 
shift whose entropy is one-half that of the 2-shift. I t is easy to see that 
T2 will be a Bernoulli shift with the same entropy as the 2-shift. 
Therefore, the 2-shift has a square root. Similarly, Bernoulli shifts 
have roots of all orders and have lots of automorphisms that commute 
with them. 

In [ l l ] the above result is pushed further by showing that Ber­
noulli shifts can be imbedded in flows. The flow St (which was previ­
ously shown by Totoki to be a i£-automorphism for each t [16]) can 
be described as follows: Let T acting on X be the 2-shift. Let ƒ be 
the function on X that takes on two values: a on those points of X 
whose first coordinate is 0 and /3 on those points whose first coordinate 
is 1. a and j8 are picked so that a/fi is irrational. Let Y be the area 
under the graph of/. St will act on F a s follows: each point, (#, /), will 
move directly up at unit speed until it hits the graph of ƒ. Then it 
goes to (Tx> 0) and continues moving up at unit speed. St for each t is 
shown to be a Bernoulli shift of finite entropy. 

Smorodinsky and Feldman constructed a flow such that St is a 
Bernoulli shift of infinite entropy. 

We say St is a Bernoulli flow if St is a Bernoulli shift for some fixed 
/. In [30] we show that any two Bernoulli flows of finite entropy are 
isomorphic (by a trivial normalization we can assume H(Si) =1) . 

Abstract ergodic theory : i£-automorphisms. We will now consider 
the question: How large is the class of Bernoulli shifts or, equiva-
lently, what is the class of transformations for which entropy tells the 
whole story? Kolmogorov had a very general conjecture along these 
lines which I would now like to describe. He introduced a class of 
transformations (now called i£-automorphisms—K-transformations 
would be more consistent with the terminology of this article) and 
conjectured that if two i£-automorphisms had the same entropy, they 
were isomorphic. (This would imply that they were Bernoulli shifts.) 

We say that T is a i£-automorphism if there is a finite partition 
P such that the T{P generate and PC-iV,"» T*P is trivial. (That is, 
Vi% TlP is the class of measurable sets generated by the TlP, 
n^i< oo. The only sets which are contained in the above classes for 
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all n have either measure 0 or 1.) A special case is when the T{P 
generate and are independent. 

There is a beautiful theorem due to Rohlin and Sinai [15] which 
says that T is a X-automorphism if and only if for every finite parti­
tion Q we have that E(Qy T) > 0 . (This is the same as saying that Q is 
not contained in VlL T4Q.) This also implies that if T is a X-auto-
morphism, any finite partition satisfies the condition of the previous 
paragraph. 

We now know that Kolmogorov's conjecture is false, [12], i.e., 

THEOREM. There is a K-automorphism that is not a Bernoulli shift. 

The proof of the above theorem is closely related to the proof of the 
first theorem. We need a usable criterion for when the T*P generate a 
Bernoulli shift and such a criterion comes out of the methods used in 
the proof of the first theorem. 

One of the main problems in ergodic theory is to find out what prop­
erties tell the whole story for i£-automorphisms. 

Pinsker's conjecture. Pinsker conjectured that every ergodic trans­
formation of nonzero entropy is the direct product of a transforma­
tion of 0-entropy and a i£-automorphism. This would imply that the 
study of ergodic transformations reduced to the separate study of 
i£-automorphisms and transformations of 0-entropy. In [28] we give 
an example of a mixing transformation for which Pinsker's conjecture 
fails. This example is based on the example of a X-automorphism 
that is not a Bernoulli shift. 

The root problem. In [ l ] Halmos raised the question, "Does every 
transformation with continuous spectrum have a square root and 
does every Bernoulli shift have a square root?" We already mentioned 
that the answer to the second question is yes. Chacon showed that 
the answer to the first question is no. In [29] we give an example of 
a i£-automorphism with no square root. This shows roughly that no 
amount of mixing, unless T is a Bernoulli shift, implies the existence 
of a square root. I t also gives a qualitative way in which a X-auto-
morphism can differ from a Bernoulli shift. 

This example is a modification of the example of a i£-automorphism 
that is not a Bernoulli shift. 

Returning to the origins of the theory : random processes. 
Codes. Now suppose T is a Bernoulli shift and P an arbitrary finite 

partition with k atoms. I would like to describe the process P, T in a 
somewhat more finitistic or physical way. For the sake of notation let 
us assume that T is the Bernoulli shift (^, | ) . Thus T is the shift based 
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on flipping a coin. To each sequence of 0, l 's we will associate another 
sequence as follows: Fix n and k and a definite way of dividing all 
possible sequences of 0, l 's of length 2n + l into k classes 1, • • • , k. 
For each term in our infinite sequence of 0, l 's look at the block of 
2n+l consecutive terms with it as center and print out the corre­
sponding 1, • • • , k. Call the resulting mapping (of sequences of 0, l 's 
to sequences of 1, • • - , kys) a "code" of length n. If we code the out­
put of our process we get another process. (The coding is physically 
realizable if we allow a time delay.) We say that a sequence of longer 
and longer codes (of the Bernoulli shift (J, §)) converges if, for each 
fixed term, all sufficiently long codes give the same result (except for 
terms belonging to a collection of sequences of 0, l 's of probability 0). 
This implies that any two sufficiently long codes agree with very 
high probability. I t is easy to see that if T is the Bernoulli shift 
(è> i)i B its independent generator, and PCVifc T*B for some k, 
then P , T can be realized by coding Bf T. Thus P , T can be physically 
constructed from a roulette wheel. I t is easy to see that any process 
P, T (T the Bernoulli shift (§, §)) *s obtained either by coding the 
sequence of 0, l 's or as the limit of a convergent sequence of longer 
and longer codes. I t is also easy to see that, in general, if two processes 
generate isomorphic transformations, then we can obtain one from the 
other by means of a convergent sequence of codes (and then get back 
the original process exactly by applying another convergent sequence 
of codes). Thus the isomorphism theorem for Bernoulli shifts can be 
interpreted in terms of codes. 

Can any completely nondeterministic process be constructed from a 
roulette wheel? If the process P , T has 0-entropy (H(P, r ) = 0 ) , 
then P , T is deterministic in the following sense: P C Vll, T{P, which 
means that by knowing the past we can predict the next letter with 
probability 1, or by knowing enough of the past we can predict the 
next letter with arbitrarily high probability. We can even make a 
stronger statement. For all n, P C Vl » T*P, which means that we can 
predict a particular letter by knowing the distant past, however 
distant. 

Now suppose T is a .K-automorphism and P any finite partition, 
such that the TlP generates. Let us call such a process a i£-process. 
The 2£-processes are exactly those processes that contain no de­
terministic part or are completely nondeterministic in the following 
sense: If P , T is not a i£-process (and T is ergodic3), then for some N 
we can divide the sequences of length N into two classes (each 

8 The assumption is there only for simplicity. In fact, if T is not ergodic, we have 
an even stronger deterministic property. 
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having measure between 1/2 —1/100 and 1/2 + 1/100) and we predict 
with probability 99/100 which class the next N symbols will belong 
to by knowing the distant past, however distant. (All we really need 
to know is a finite number of terms in the distant past; however, we 
need more terms in the more distant past.) 

In these terms Kolmogorov's conjecture says that if P , T is com­
pletely nondeterministic, then T is a Bernoulli shift and the process is 
essentially constructible from a roulette wheel. The fact that Kol-
mogorov's conjecture is false means that we have 

THEOREM. There exists a completely nondeterministic process^ P, T, 
such that if T is a Bernoulli shift (and P a finite partition), then for all n 
large enough we can find two disjoint collections of sequences of length n, 
C and C, such that the measure of C under P, T is greater than 99/100 
and the measure of C under P , T, is greater than 99/100. 

(It turns out that even more is true. There is a fixed cr > 0, associated 
with P, P, such that C and C can be chosen with the additional property 
that any sequence in C differs from any sequence in C in more than an 
places. Thus P, T and P , T are a definite distance apart (see [14]).) 

The above theorem says that there is a completely nondetermi­
nistic process that is a definite distance away from all processes that 
can be constructed from roulette wheels. 

In terms of the above notion of distance it can be shown [14] that 
the processes (P, T), T a Bernoulli shift, P an arbitrary partition, are 
the only ones that can be approximated arbitrarily well by processes 
physically constructible from a roulette wheel. 

Pinsker's conjecture. If this were true, then any process could be 
constructed from a deterministic and a completely nondeterministic 
process. 

Markov processes. We say that a process is a Markov process if the 
probability of printing a given letter depends on the previous letter 
but not on any of the ones before that. I t was shown (in a joint paper 
with N. A. Friedman [13]) that if P , T is a mixing4 Markov process 
and P generates, then T is a Bernoulli shift. 

The criterion developed in the above mentioned paper seems to 
apply to the situation where P , T is the model for the process obtained 
by observing a teleprinter, implying that T is a Bernoulli shift. Since 
the above is clearly not a precise mathematical statement all that can 
be said is that it seems reasonable. 

McCabe-Shields [17] and Smorodinsky [18] have extended the 

4 Mixing in this context is equivalent to saying that if N is large enough, then any 
letter is possible at time N% regardless of what letter was printed out at time 0. 
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Markov process result to certain Markov processes with continuous 
state space. The class contains the regular Gaussian processes. 

Returning to the origins of the theory : automorphisms of compact 
groups. Let R be the transformation defined on the unit square as 
follows: R(x, y) = (x+y, x + 2y) (mod 1). I t is easy to see that R is an 
invertible, measure-preserving transformation. The criterion de­
veloped in [ l l ], [l3] shows that R is (i.e., isomorphic to, see p. 878) a 
Bernoulli shift. 

R is an example of the following more general situation. Take any 
2X2 matrix with integer coefficients and determinants ± 1 . (In the 
case of R we take (} 2) •) Such a matrix acts on the unit square by trans­
forming each point and then subtracting off the largest integer in the 
x-coordinate and the largest integer in the ^-coordinate. Because the 
determinant is ± 1 , this transformation is measure-preserving and 
invertible. I t can be shown [ l ] that the transformation is ergodic if 
and only if the matrix has no eigenvalues that are roots of unity. In 
this case our criterion applies and we can show that we get a Bernoulli 
shift. 

Let us note that the unit square is a topological group under addi­
tion mod 1 (usually called the 2-dimensional torus) and that the 
transformations described above are its automorphisms. We thus 
have that the ergodic automorphisms of the 2-dimensional torus are 
Bernoulli shifts. (Adler and Weiss already showed that entropy 
classified the automorphisms of the 2-dimensional torus [19].) 

Using results of Sinai [20 ] it could be shown that an automorphism 
of the w-dimensional torus whose matrix had no eigenvalues on the 
unit circle was a Bernoulli shift. The case of eigenvalues on the unit 
circle that were not roots of unity (the automorphism is ergodic if and 
only if there are no eigenvalues that are roots of unity) was still a 
mystery. We now have 

THEOREM (KATZNELSON [2l]). Every ergodic automorphism of the 
n-dimensional torus is isomorphic to a Bernoulli shift. 

Since the entropy can be calculated in terms of the eigenvalues of 
the matrix (see Sinai [20 ] and Bowen [22]), Katznelson's theorem 
tells us exactly what the automorphism is, measure-theoretically. 

As far as general compact groups go, Rohlin [23] and Juzvinskii 
[24] showed years ago that every ergodic automorphism of a compact 
group is a iT-automorphism. It is still not known if they are Bernoulli 
shifts. 

Returning to the origin of the theory : mechanical systems. So far 
there is only one kind of mechanical system that can be completely 
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analyzed from the ergodic theory point of view (that is, we know 
exactly—up to isomorphism—what the transformation on phase 
space is). These systems are the so-called geodesic flow on surfaces of 
negative curvature. I call these mechanical systems because6 in 
3-dimensional Euclidean space one can specify a closed surface V and 
place near it a finite number of centers of attraction or repulsion, 
creating a force potential in V such that the motion of a material 
point constrained to move in V under the above potential will be 
mathematically equivalent to geodesic flow on a surface of negative 
curvature. 

By putting together results of Sinai and Anosov (see Arnold and 
Avez [26]) and the criterion that comes from the proof of the iso­
morphism theorem for Bernoulli shifts we get that the above flows are 
Bernoulli flows (restricted to a surface of constant energy). 

What do the above results mean? Suppose that we perform an ex­
periment or take some measurement of our mechanical system and 
that this experiment or measurement has only a finite number of 
possible outcomes. Suppose also that we repeat this measurement at 
regularly spaced intervals of time (all multiples of some fixed unit of 
time). The sequence of outcomes gives us a process. In some sense all 
the information we can get about a mechanical system is some pro­
cess derived from it. Our result says that these processes are very 
random and cannot be distinguished from processes obtained by 
coding a roulette wheel. 

Geodesic flow on manifolds of negative curvature are very special 
examples. There is, however, reason to believe that they are just 
mathematically simpler cases of a fairly general phenomenon, which 
includes the case of hard sphere gas enclosed in a box. I should men­
tion in this connection that Sinai has succeeded in proving that the 
hard sphere gas in a rectangular box is ergodic on manifolds of con­
stant energy. He actually proved more, namely that the above trans­
formations are i£-automorphisms [27]. 
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