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I. Introduction. Suppose that W is an open Riemann surface. 
Denote by A(W) and M(W) the families of single-valued analytic 
and meromorphic functions on W, respectively. The Hardy class 
HP(W), for 0<p< oo, is the family of sllfEA(W) for which | / | * 
admits a harmonic majorant on W. Let AB(W) be the family of all 
bounded ƒ E A ( W ) . Denote by MB*(W) the family of allfEM(W) 
such that l n + | / | admits a superharmonic majorant on W. Write 
AB*(W) =A(W)C\MB*(W). We shall write WE0P, 0AB, 0AB*> 0MB* 
whenever HP(W), AB(W), AB*(W), MB*(W), respectively, reduces 
to the constant functions. Finally, as usual, WEOQ iff IF is parabolic. 

Now, as is readily verified, AB(W)ÇHp(W)ÇHq(W)ÇAB*(W) 
ÇMB*(W) for 0<q<p< oo. I t follows that 

OQ ^ OMB* ^ OAB* ^ noq^o~^op^o+
p ^ u o ^ oAB, 

where 0; =U {0q\ 0<q<p}, 0£ =fl {0q\p<q< oo }, 0 < £ < o o . I t is 
known that all of these inclusions are strict in the case of arbitrary 
Riemann surfaces (see Heins [3, pp. 34-50] and Sario-Nakai [7, pp. 
276-280]). The appropriate constructions are Myrberg type surfaces 
and hence of infinite genus. 

If one now restricts W to be of finite genus, the situation changes. 
First of all, it is now known that OG = OMB* = OAB* (see Sario-Nakai 
[7, p. 280]). Further, Heins [3, pp. 50-51] showed next that OQ<OX 

SOAB. Aside from these facts, the classification scheme for Hardy 
classes for Riemann surfaces of finite genus, and thus for plane do­
mains, has remained an open question (see Heins [3, p. 50] and 
Rudin [6, p. 49]). 

In one of our recent projects, we found a number of results on func­
tion-theoretic null-sets and classification theory for Hp classes. In this 
note we wish to present some of these results. Included will be a par­
tial, though highly suggestive, answer to the open question mentioned 
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above. A more detailed development will appear at a later date. 
I wish to thank Professor Halsey Royden for his encouragement 

and helpful discussions. 

II. On removable singularities. Let 5 denote the sphere and X the 
finite plane. Suppose that £ is a bounded closed totally disconnected 
subset of S. We shall write EENP iff HV(V) = HP(V-E) for every 
subdomain V of 5 for which E £ V. EÇ^NB and E^NMB* are defined 
similarly using AB and MB*, respectively. Let EE.NG iff Cap(£) =0 . 
Finally, write E = 3C[Xi, • • • , Xn] iff E is concentrated entirely on an 
w-star formed by n rays emanating from an origin out to <*> such that 
the successive angles are 7rXi, • • • , 7rX„, n^2, Xi+ • • • +Xn = 2. 

The proofs of the following three theorems involve a combination 
of techniques from classical potential theory and classification theory. 

THEOREM 1. If ECE.No, then E(~NMB*, and conversely. 

THEOREM 2. The following are equivalent, (i) E^NP; (ii) S—EÇiOp; 
and (iii) HP(V—E) ~HV(V) for some subdomain V of S for which 
EÇV. 

THEOREM 3. Suppose that Ei, • • • , En are mutually disjoint and in 
Np. Then, E = \J{Ek\l£kgn}ENp. 

The following theorem is a generalization of a result in Heins [3, p. 
SO]. 

THEOREM 4. Let Ti, • • • , Tn be a finite number of disjoint analytic 
Jordan arcs. Let Ei, • • • , En be bounded closed totally disconnected 
subsets of S, EjQYj, l^j^n. Suppose that all EJÇZNB. Then, 
£ = U { £ y | l è / â * } G i V i . 

This theorem is proved by introduction of appropriate local analyt­
ic coordinates near the Tk and by use of classical boundary properties 
of Hp functions as presented, for example, in Golusin [2, pp. 345-366] 
and Privalov [5, pp. 53-83]. 

The next theorem can be effectively used as a fundamental lemma 
in the study of the Hp classification. Its proof is in part similar to that 
of Theorem 4 and involves a study of the Hp spaces corresponding to 
the sectors. 

THEOREM 5. Suppose that ££3e[Xi, . . . f \ „ ] and E(E:NB- Let 
X==min{Xy| lSjSn} and l^p< <*>. Suppose that f E:HP(S—E). Then, 

00 

ƒ(«) - I ^ r ' , 0< |s | g » , 
4-0 

ECE.No
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with Ck — 0 for all k*zMp, where Mi is the least integer è l A anà ^ P » 
p>l, is the least integer >l/p\. Thus, the complex linear space 
HP(S—E) is finite-dimensional. 

Of course, Theorem 5 with n = 2, Xi =X2 = 1, is essentially Theorem 4. 
The last two theorems of this section will serve to show that The­

orem 3 is in some strong sense best possible. The proofs depend upon 
constructions that arise in the following section. 

THEOREM 6. Let 1 ^ £ < <*>. Suppose that EnE:Np for all n^l and 
that the En are mutually disjoint. Suppose too that jE = U { i 2 n | l ^ w < o o } 
is a bounded closed subset of S. Then, it can happen that E^Nq, all 
0<q<oo. 

THEOREM 7. Suppose that EiÇiNp and E2E:Npfor some 0<p< <*>. 
It can then happen that E\UE^NP although Z£iP\E2 consists of a single 
point. 

We can conclude from these theorems that function-theoretic null-
sets of type Np do not have the properties expected by analogy with 
No and NB. 

III. On the Hp classification. Our main result on the Hp classifica­
tion is the following. 

THEOREM 8. For plane domains the following classification scheme 
holds: 

Oö^o7<Oi^o7/2<03/2^o7<o2go7/2<06/2 

S(h<Oz- • • < U OP<OAB-
0<p<» 

The most difficult portion of the proof consists of showing that 
Oï < 0i. This is handled by use of Riesz «-potentials and the asso­
ciated potential theory as in Carleson [l, pp. 14-39]. The appropriate 
construction is a symmetric bounded closed totally disconnected sub­
set E of the real axis such that E^NB and l/z^Hp(S—E) for all 
0 <p < 1 ; see Theorem 4. Inequality 0^2 < 0*/2 for k ^ 3 is now proved 
by use of transformation w=z2!k. 

Because of its rather surprising simplicity, we will now give the 
proof of inequality U0<P<oo OP<OAB- We need the following generaliza­
tion of a classical theorem of Nevanlinna-Frostman. 

LEMMA. Let D be a subdomain of S, D^OG- Let K be a bounded 
closed subset of S with Cap(Z") 5*0. Suppose thatfEM(D) andf[D]C\K 
is void. Then, f E MB* (D). 
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By now, this result is reasonably well known. See, for example, 
Heins [4, pp. 426-428], Rudin [6, pp. 48-49], or Sario-Noshiro [8, 
p. 92]. 

Take any closed totally disconnected set A on the unit circle such 
that : 

(i) the linear measure of A is 0; 
(ii) C a p ( ^ ) ^ 0 ; 
(iii) diam(^t) is very small; 
(iv) A is symmetric relative to 1 ; 
(v) 1ÇA. 
For instance, A can be a Cantor set. Consider the set Fi==log(log A) 

QX in the /-plane. The set Fi has a number of properties: (i) F\ is 
bounded away from 0; (ii) FiQ {t\ Re(t)>c}, some — <» < c < 0 ; 
(iii) Fi is concentrated on the lines Im(/) =(2w + l)7r/2, n integral; 
(iv) oo is a cluster point of F%. Form the image of F\ under z — l/t and 
adjoin {o} to get a bounded closed totally disconnected subset Ei 
of 5. At once, E^NB-NQ (see Sario-Oikawa [9, pp. 289, 291]). 
LetWi^S-Ei. 

For zÇzWi, definefi(z) =exp(e1/z) andf2(z) = l/fi(z) omits set A for 
zE.W\. Hence, by the Lemma, fi(EAB*(Wi). Because MB*(Wi) is a 
field, f2ÇzAB*(Wi). Let %y be the least harmonic majorant of ln + | f,-\ 
on Wi for j = l, 2. 

Proceed similarly with regard to the set F2^\og(i log A)QX. Here 
we let W2 = S-E2 and define f3(z) =exp(^ 1 ' ' ) , /4(s) = !/ƒ«(*) for 
zGW2. f$(z) then omits the set A for zGW2. I t follows t h a t / 3 and ƒ4 
are in AB*(W2). Let xy be the least harmonic majorant of ln+ | fj\ on 
W2 for j = 3, 4. 

Define W^S-E^JE,. At once, Ei\JE2£NB. Since J^m% ln+|/y | 
^ Zi-iX/C*), «GT^, we find that e ^ G - t f i W . But, then, e1'»* 
EHp(W) for 0<^>< 00. Hence, WEOAB-UÎKPK» Op. 

The proof of Theorem 6 also follows from this construction. In 
addition, the following weak form of Theorem 8 can be proved by use 
of just the same simple method and some simple changes of coordi­
nate: 

Oo ^ Out < Oi < 02 < 0 4 < 0 8 < On < • • • < U 0P< OAB. 
0<p<oo 

IV. Concluding remarks. Theorem 8 suggests quite strongly that 
for plane domains Op <0p<0p when l^p<co. The case 0<p<l 
remains somewhat mysterious, however. The main reason for this 
seems to be the distinct lack of nontrivial techniques for the study of 
Hp classes when 0<p<l (see Heins [3]). 
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