CLASSIFICATION THEORY FOR HARDY CLASSES OF ANALYTIC FUNCTIONS

BY DENNIS A. HEJHAL¹

Communicated by Paul J. Cohen, March 19, 1971

I. Introduction. Suppose that W is an open Riemann surface. Denote by A(W) and M(W) the families of single-valued analytic and meromorphic functions on W, respectively. The Hardy class $H_p(W)$, for $0 , is the family of all <math>f \in A(W)$ for which $|f|^p$ admits a harmonic majorant on W. Let AB(W) be the family of all bounded $f \in A(W)$. Denote by $MB^*(W)$ the family of all $f \in M(W)$ such that $\ln^+|f|$ admits a superharmonic majorant on W. Write $AB^*(W) = A(W) \cap MB^*(W)$. We shall write $W \in O_p$, O_{AB} , O_{AB^*} , O_{MB^*} whenever $H_p(W)$, AB(W), $AB^*(W)$, $MB^*(W)$, respectively, reduces to the constant functions. Finally, as usual, $W \in O_g$ iff W is parabolic.

Now, as is readily verified, $AB(W) \subseteq H_p(W) \subseteq H_q(W) \subseteq AB^*(W)$ $\subseteq MB^*(W)$ for $0 < q < p < \infty$. It follows that

$$O_{\mathbf{G}} \leq O_{MB}^* \leq O_{AB}^* \leq \bigcap_{q>0} O_q \leq O_p^- \leq O_p \leq O_p^+ \leq \bigcup_{q<\infty} O_q \leq O_{AB},$$

where $O_p^- = \bigcup \{O_q \mid 0 < q < p\}$, $O_p^+ = \bigcap \{O_q \mid p < q < \infty\}$, 0 . It is known that all of these inclusions are strict in the case of arbitrary Riemann surfaces (see Heins [3, pp. 34–50] and Sario-Nakai [7, pp. 276–280]). The appropriate constructions are Myrberg type surfaces and hence of infinite genus.

If one now restricts W to be of finite genus, the situation changes. First of all, it is now known that $O_G = O_{MB^*} = O_{AB^*}$ (see Sario-Nakai [7, p. 280]). Further, Heins [3, pp. 50-51] showed next that $O_G < O_1 \le O_{AB}$. Aside from these facts, the classification scheme for Hardy classes for Riemann surfaces of finite genus, and thus for plane domains, has remained an open question (see Heins [3, p. 50] and Rudin [6, p. 49]).

In one of our recent projects, we found a number of results on function-theoretic null-sets and classification theory for H_p classes. In this note we wish to present some of these results. Included will be a partial, though highly suggestive, answer to the open question mentioned

AMS 1970 subject classifications. Primary 30A44, 30A48, 30A78, 31C15.

Key words and phrases. Open Riemann surfaces, Hardy H_p classes, classification theory, function-theoretic null-sets, Riesz potential, Nevanlinna-Frostman theorem.

¹ Supported by an NSF Traineeship at Stanford University.

above. A more detailed development will appear at a later date.

I wish to thank Professor Halsey Royden for his encouragement and helpful discussions.

II. On removable singularities. Let S denote the sphere and X the finite plane. Suppose that E is a bounded closed totally disconnected subset of S. We shall write $E \subseteq N_p$ iff $H_p(V) = H_p(V - E)$ for every subdomain V of S for which $E \subseteq V$. $E \subseteq N_B$ and $E \subseteq N_{MB^*}$ are defined similarly using AB and MB^* , respectively. Let $E \subseteq N_G$ iff Cap(E) = 0. Finally, write $E = \mathcal{K}[\lambda_1, \dots, \lambda_n]$ iff E is concentrated entirely on an n-star formed by n rays emanating from an origin out to ∞ such that the successive angles are $\pi\lambda_1, \dots, \pi\lambda_n, n \ge 2, \lambda_1 + \dots + \lambda_n = 2$.

The proofs of the following three theorems involve a combination of techniques from classical potential theory and classification theory.

THEOREM 1. If $E \in N_G$, then $E \in N_{MB^*}$, and conversely.

THEOREM 2. The following are equivalent. (i) $E \in N_p$; (ii) $S - E \in O_p$; and (iii) $H_p(V-E) = H_p(V)$ for some subdomain V of S for which $E \subseteq V$.

THEOREM 3. Suppose that E_1, \dots, E_n are mutually disjoint and in N_p . Then, $E = \bigcup \{E_k \mid 1 \le k \le n\} \in N_p$.

The following theorem is a generalization of a result in Heins [3, p. 50].

THEOREM 4. Let $\Gamma_1, \dots, \Gamma_n$ be a finite number of disjoint analytic Jordan arcs. Let E_1, \dots, E_n be bounded closed totally disconnected subsets of S, $E_j \subseteq \Gamma_j$, $1 \leq j \leq n$. Suppose that all $E_j \in N_B$. Then, $E = \bigcup \{E_j \mid 1 \leq j \leq n\} \in N_1$.

This theorem is proved by introduction of appropriate local analytic coordinates near the Γ_k and by use of classical boundary properties of H_p functions as presented, for example, in Golusin [2, pp. 345–366] and Privalov [5, pp. 53–83].

The next theorem can be effectively used as a fundamental lemma in the study of the H_p classification. Its proof is in part similar to that of Theorem 4 and involves a study of the H_p spaces corresponding to the sectors.

THEOREM 5. Suppose that $E \in \mathcal{K}[\lambda_1, \dots, \lambda_n]$ and $E \in N_B$. Let $\lambda = \min\{\lambda_j | 1 \le j \le n\}$ and $1 \le p < \infty$. Suppose that $f \in H_p(S-E)$. Then,

$$f(z) = \sum_{k=0}^{\infty} c_k z^{-k}, \quad 0 < |z| \leq \infty,$$

with $c_k=0$ for all $k \ge M_p$, where M_1 is the least integer $\ge 1/\lambda$ and M_p , p>1, is the least integer $>1/p\lambda$. Thus, the complex linear space $H_p(S-E)$ is finite-dimensional.

Of course, Theorem 5 with n=2, $\lambda_1=\lambda_2=1$, is essentially Theorem 4. The last two theorems of this section will serve to show that Theorem 3 is in some strong sense best possible. The proofs depend upon constructions that arise in the following section.

THEOREM 6. Let $1 \le p < \infty$. Suppose that $E_n \in N_p$ for all $n \ge 1$ and that the E_n are mutually disjoint. Suppose too that $E = \bigcup \{E_n | 1 \le n < \infty \}$ is a bounded closed subset of S. Then, it can happen that $E \notin N_q$, all $0 < q < \infty$.

THEOREM 7. Suppose that $E_1 \subset N_p$ and $E_2 \subset N_p$ for some $0 . It can then happen that <math>E_1 \cup E_2 \subset N_p$ although $E_1 \cap E_2$ consists of a single point.

We can conclude from these theorems that function-theoretic nullsets of type N_p do not have the properties expected by analogy with N_G and N_B .

III. On the H_p classification. Our main result on the H_p classification is the following.

THEOREM 8. For plane domains the following classification scheme holds:

$$O_{G} \leq O_{1}^{-} < O_{1} \leq O_{3/2}^{-} < O_{3/2} \leq O_{2}^{-} < O_{2} \leq O_{5/2}^{-} < O_{5/2}$$
$$\leq O_{3}^{-} < O_{3} \cdot \cdot \cdot \cdot < \bigcup_{0 < p < \omega} O_{p} < O_{AB}.$$

The most difficult portion of the proof consists of showing that $O_1^- < O_1$. This is handled by use of Riesz α -potentials and the associated potential theory as in Carleson [1, pp. 14–39]. The appropriate construction is a symmetric bounded closed totally disconnected subset E of the real axis such that $E \in N_B$ and $1/z \in H_p(S-E)$ for all $0 ; see Theorem 4. Inequality <math>O_{k/2}^- < O_{k/2}$ for $k \ge 3$ is now proved by use of transformation $w = z^{2/k}$.

Because of its rather surprising simplicity, we will now give the proof of inequality $\bigcup_{0 . We need the following generalization of a classical theorem of Nevanlinna-Frostman.$

LEMMA. Let D be a subdomain of S, $D \oplus O_G$. Let K be a bounded closed subset of S with $Cap(K) \neq 0$. Suppose that $f \in M(D)$ and $f[D] \cap K$ is void. Then, $f \in MB^*(D)$.

By now, this result is reasonably well known. See, for example, Heins [4, pp. 426–428], Rudin [6, pp. 48–49], or Sario-Noshiro [8, p. 92].

Take any closed totally disconnected set A on the unit circle such that:

- (i) the linear measure of A is 0;
- (ii) $\operatorname{Cap}(A) \neq 0$;
- (iii) diam(A) is very small;
- (iv) A is symmetric relative to 1;
- (v) $1 \notin A$.

For instance, A can be a Cantor set. Consider the set $F_1 \equiv \log(\log A)$ $\subseteq X$ in the t-plane. The set F_1 has a number of properties: (i) F_1 is bounded away from 0; (ii) $F_1 \subseteq \{t \mid \text{Re}(t) > c\}$, some $-\infty < c < 0$; (iii) F_1 is concentrated on the lines $\text{Im}(t) = (2n+1)\pi/2$, n integral; (iv) ∞ is a cluster point of F_1 . Form the image of F_1 under z = 1/t and adjoin $\{0\}$ to get a bounded closed totally disconnected subset E_1 of S. At once, $E_1 \in N_B - N_G$ (see Sario-Oikawa [9, pp. 289, 291]). Let $W_1 = S - E_1$.

For $z \in W_1$, define $f_1(z) = \exp(e^{1/z})$ and $f_2(z) = 1/f_1(z)$ omits set A for $z \in W_1$. Hence, by the Lemma, $f_1 \in AB^*(W_1)$. Because $MB^*(W_1)$ is a field, $f_2 \in AB^*(W_1)$. Let χ_j be the least harmonic majorant of $\ln^+|f_j|$ on W_1 for j=1, 2.

Proceed similarly with regard to the set $F_2 \equiv \log(i \log A) \subseteq X$. Here we let $W_2 = S - E_2$ and define $f_3(z) = \exp(ie^{1/z})$, $f_4(z) = 1/f_3(z)$ for $z \in W_2$. It follows that f_3 and f_4 are in $AB^*(W_2)$. Let χ_j be the least harmonic majorant of $\ln^+|f_j|$ on W_2 for j = 3, 4.

Define $W = S - E_1 \cup E_2$. At once, $E_1 \cup E_2 \in N_B$. Since $\sum_{j=1}^4 \ln^+ |f_j| \le \sum_{j=1}^4 \chi_j(z)$, $z \in W$, we find that $e^{1/z} \in H_1(W)$. But, then, $e^{1/pz} \in H_p(W)$ for $0 . Hence, <math>W \in O_{AB} - \bigcup_{0 .$

The proof of Theorem 6 also follows from this construction. In addition, the following weak form of Theorem 8 can be proved by use of just the same simple method and some simple changes of coordinate:

$$O_G \leq O_{1/2} < O_1 < O_2 < O_4 < O_8 < O_{16} < \cdots < \bigcup_{0 < p < \infty} O_p < O_{AB}.$$

IV. Concluding remarks. Theorem 8 suggests quite strongly that for plane domains $O_p^- < O_p < O_p^+$ when $1 \le p < \infty$. The case $0 remains somewhat mysterious, however. The main reason for this seems to be the distinct lack of nontrivial techniques for the study of <math>H_p$ classes when 0 (see Heins [3]).

REFERENCES

- 1. L. Carleson, Selected problems on exceptional sets, Van Nostrand Math. Studies, no. 13, Van Nostrand, Princeton, N. J., 1967. MR 37 #1576.
- 2. G. M. Golusin, Geometrische Funktionentheorie, Hochschulbücher für Mathematik, Band 31, VEB Deutscher Verlag der Wissenschaften, Berlin, 1957. MR 19, 735.
- 3. M. Heins, Hardy classes on Riemann surfaces, Lecture Notes in Math., no. 98, Springer-Verlag, Berlin and New York, 1969. MR 40 #338.
 - 4. ——, Lindelöfian maps, Ann. of Math. (2) 62 (1955), 418-446. MR 17, 726.
- 5. I. I. Privalov, Randeigenschaften analytisher Funktionen, Hochschulbücher für Math., Band 25, VEB Deutscher Verlag, Berlin, 1956. MR 18, 727.
- 6. W. Rudin, Analytic functions of class H_p , Trans. Amer. Math. Soc. 78 (1955), 46–66. MR 16, 810.
- L. Sario and M. Nakai, Classification theory of Riemann surfaces, Springer-Verlag, Berlin, 1970.
- 8. L. Sario and K. Noshiro, Value distribution theory, Van Nostrand, Princeton, N. J., 1966. MR 35 #6833.
- 9. L. Sario and K. Oikawa, Capacity functions, Die Grundlehren der math. Wissenschaften, Band 149, Springer-Verlag, Berlin and New York, 1969. MR 40 #7441.

STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94305