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UNIFORMISATION IN A PLAYFUL UNIVERSE 

BY Y I A N N I S N . M O S C H O V A K I S 1 

Communicated by Paul J. Cohen, February 26, 1971 

It was shown in [l ] and [3] that several questions about projective 
sets can be answered if one assumes the hypothesis of projective 
determinacy. We show here (in outline) that the same hypothesis 
settles the questions of uniformization and bases for all analytical 
classes. 

Let o)= {0, 1, 2, • • • }, JR=-«W (the "reals"), 9C = XiX • • • XXk 

with Xi—co or Xi — R be any product space. We study subsets of 
these product spaces, i.e. relations of integer and real arguments. 

THEOREM 1. Let n be odd, n*zl, assume that every A*_i game is 
determined. Then for each XÎ  relation PCIi?X9C, there exists a 11^ 
relation P*Ç1P such that 

(3a)P(a, x) <=> (lla)P*(a, x). 

(For n = 1 this is the classical Kondo-Addison Uniformization 
Theorem, see [8].) 

There are many consequences of this result which are well known. 
The following computation of bases is the corollary which is founda-
tionally most significant. 

THEOREM 2. If every projective game is determined, then every non­
empty analytical set has an analytical element. 

More specifically: if n is even, n*z2, and every A*__2 game is deter­
mined, then every nonempty 2* subset of R contains a A* real; if n is odd, 
n ^ l , and every A*__i game is determined, then there is a fixed real cto 
such that the singleton {<XQ} is II* (so that ao is Aj+i) and every non­
empty 2* subset of R contains a real recursive in O>Q. 

(For n~3, this gives the Martin-Solovay Basis Theorem [5] with 
Mansfield's improvement [2]. The proofs in these two papers use 
only the fairly weak hypothesis that there exists a measurable 
cardinal, or even that for each a, ce exists. Our proof depends on the 
determinacy of a particular Aj game and it can be verified that this 
game is determined if for every a, a* exists.) 
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Our methods combine easily with methods developed by D. A. 
Martin [4] to yield the following additional result. 

THEOREM 3. Let n be odd, n^l, lethn be the supremum of the lengths 
of the prewellorderings in A*, assume that every An_x game is determined. 
If Bn is the smallest Boolean algebra of sets containing the open sets and 
closed under <$n unions, then A j Ç 5 n and each 2„+ 1 set is the union of 
hl

n sets in Bn. 

(For n = 3 this was shown by Martin in [4].) 
In the proofs we use the axioms of Zermelo-Fraenkel set theory and 

the axiom DC of dependent choices, but not the full axiom of choice. 
Thus the results hold in the theory Z F+DC-{-each game is determined. 
For this latter theory, Theorem 3 combines with results of Martin in 
[4] and ours [ó] to give the elegant characterizations (odd n), 

An = Bn, 

P G Sn-f 1 <=» P = U xPb with each P$ G BJ 

Full details will appear in [7]. 

1. Terminology. Precise definitions of the classes 2£, Un, etc., 
determinacy, the axiom DC oî dependent choices and recursive 
functions ƒ : 9C—><y with domain and range any product space can be 
found in [6]. 

If PÇ3C is a pointset we also think of it as a relation and write 
in terchangeably, 

# G P**P(x). 

I t will be convenient to use "algebraic" notation for the logical opera-
2 The exact computation of the ordinals 5n (n ^ 1) poses a very interesting problem. 

The following facts are known: 
(1) In ZF+DC, 8j = Ki (classical result). 
(2) In Z F-{-DC-{-Full Determinacy, Ni and N2 are measurable, hence regular 

(R. M. Solovay). 
(3) In Z F-{-DC-{-Full Determinacy, all 5ft are cardinals, 5 n ^ ^ f t and for odd n, hn 

is regular, [6]. 
(4) In ZF+DC, SJ^Ni, hence in Z F-{-DC-{-Full Determinacy, ^ = «2 (D. A. 

Martin, unpublished). 
(5) In Z F-{-DC-{-Full Determinacy, 53 =»K»+i = t h e first regular cardinal above tfe, 

[4]! 
(6) In Z F-{-Projective Determinacy-{-Full Choice, 5 3 ^ ^ 3 , [4], 
(7) In Z F-{-DC-{-Full Determinacy, for each odd n, 5n = (\n)+ for some cardinal 

X» of cofinality œ (A. S. Kechris, unpublished, using the methods of the present note). 
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tions on these pointsets, e.g. 

x G 3<*P <=» (3»)P(«, x) (P £ co X 9C), 

» G V»P <̂> (V»)P(«, x) (P Ç a? X 9C), 

A; G 3*P <=» (3a)P(a, x) (P Q R X 9C), 

* G V*P <=» (Va)P(a, x) (P Ç P X 9C). 

Similarly, if T is a dass <?ƒ pointsets, 1BY = J 3 K P : P G r } , V*3Rr 
= { V * 3 * P : P e r } , e t c . 

The dual class T is defined by f = { 9 C - P : P G r } . 
A class of pointsets T is adequate if it contains all recursive pointsets 

and is closed under conjunction, disjunction, bounded number quanti­
fication and substitution of recursive functions. All classes 2^, II*, A* 
are adequate, even with n — 0 (Sj = all recursively enumerable sets). 

For each T, let r be the class of all PC9C such that for some 
QQRXX, QGT and some a0ER, 

P(x) «=> Q(a0, x). 
Finally, 

A = {P C 9C:P G T and DC - P G r } . 

2. Norms and scales. The idea of the proof is to formulate a strong 
prewellordering property, like that of [ l ] , which on the one hand can 
be shown to propagate from each II* to 2£+1 and from each S^+1 to 
n*+ 2 , and on the other hand implies uniformization when it holds on 
a II-class. 

A norm on a set P is a function <p : P—>ordinals ; we call <p a Y-norm 
if there are relations ^ r, S r in Y and Y respectiveley, such that 

P(y) =* (v*0[x Svy<=*% ^ry<^ [P(x) &#{%) S <p(y)]]. 

Y has the prewellordering property in the sense of [ l ] or [3], if 
every PÇEY admits a T-norm. 

A scale on a set P is a sequence <po, <Pu <£>2, • • • of norms on P such 
that the following limit condition holds : 

,#v If Xo, Xi, #2, • • • (~P> if limit^oo x» = x, if, for each n and all 
large i> <pn(xi) =Xn, then P(x) and, for each n, <pn(x)^Xn.

3 

We call >̂o, <Pu <P2t • • • a Y-scale if there are relations Sr(», X, y), 
5r(n, x, y) in T and Y respectively, such that for each n, 

8 I wish to thank my student A. S. Kechris for simplifying my original definition 
of a scale and thereby shortening considerably the computation in the proof of C 
below. 
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p(y) => ( V * ) [ S T ( » , *, y) <=*Sï(n, x, y) <=> [P(x) & <pn(x) ^ <pn(y)]]. 

T has property S if each P £ T admits a T-scale. 

3. Basic results. Theorem l follows fairly easily from the following 
four basic results. 

THEOREM A. The class Sj of all recursively enumerable sets has prop­
erty $. 

THEOREM B. If V is adequate, P £ F and P admits a T-scale, then 
3RP admits a 3PVRY-scale. 

THEOREM C.IfY is adequate, if each A game is determined and DC 
holds, if P £ T admits a Y-scale, then V^P admits a VR3RT-scale. 

THEOREM D. If T is adequate, 3*Tc r , V*Tcr , V T C r and T 
has property §>, then f or each PÇIPX9C, P £ I \ there is some P*QP 
such that P * £ T and 

(la)P(a, x) <=» (3!a)P(ot, x). 

4. Proofs. Proof of A is trivial and that of D is a minor modification 
of a standard proof of the Kondo-Addison Theorem, e.g. that in [8]. 
Proofs of B and C are elaborations of the corresponding cases in the 
proof of the Prewellordering Theorem in [ l ] . We omit all details of 
B, which is the easier of the two. 

To prove C, suppose 

P(x) «=> (Va)0(a, x), 

with QÇÎ.T, let \p0, \ph ^2, • • • be a F-scale on Q. Let u0, «i> #2, • • • 
be a recursive enumeration of all finite sequences of co such that UQ 
is the empty sequence and if Ui is an initial segment of Uj, then i < j . 
For each i and each x, y, consider the game d(x, y) defined as 
follows: if player I plays 7 and player II plays 8, put 

a = Ui ^ 7 , & — Ui^ ô 

and call II a winner if one of the following conditions hold: 
(0) -iQ(fi,y), 
(1) Q(fi, y) & Q(a, x) & * , (« , x) <<Ao(j8, y), 
(2) <203. y) & Q(a, x) & *„(«, *) =*,(|8, y) & *i(a, x) <fc(|3f y), 

,., Q(fi, J) & G(«> *) & *o(«, *) = tfofo y) & • • • & **-i(«, *) 
(1) 

= ^ ( 0 , y) & fc(a, *) â *<(j8, y). 

For each i, put 
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Pi(x) «=» (Va 3 Ui)Q(a, x), 

x Ŝ ,• ;y <=> x, y G Pi & H wins G»(ff, ;y). 

Notice that PQ — P. NOW the methods of [l ] easily show that if every 
A game is determined, then each ^,- is a prewellordering on Pt- and 
hence defines a norm ç?t:Pt—^ordinals. Moreover, there are relations 
Si(n, x, y)y S2(n, x, y) in VR1RT and 1R VRT respectively, such that 

Pn(y) =» (V^)[5i(^, x, y)^S2(n, x, y) <=> [Pn(x) & <pn(x) ^ <pn(y)]]-

The sequence <po, <pu <p2, • - - consists of norms on different sets, but 
it is not hard to verify that if we can show the limit property (*) for 
it, then we can define a scale <po , <p{, <p{, • • • on P itself. 

Let Xoy Xif #2, • • • G-P, assume that l imi t s* Xi — x and for each n 
and all large i, (pn(xi)=\n; we must show that P(x) and for all n, 
<pn(x) ^XTO. Without loss of generality we may assume that <pn(xi) =Xn, 
all i ^ w ; thus it is enough to show that, for each i, II has a winning 
strategy in Gi(x, xi), since for i = 0 this proves P(x) and for all i 
it shows x^iXi, i.e. <p%(x)^<pi(xi) = XZ. 

Suppose ^ i=(a 0 , • • • , ai) and let us picture the game G»(x, xi) 
as follows: 

Gi(x9 xi) 
a0, ai> • • •, öi I(#) az-j.1, ÖZ+2, ai+3, • • • , « 

Uo, fli, • • • , ai TL(xi) ai(l + 1), «i(/ + 2), «i(/ + 3), • • •, «i. 

Here F s first move is labeled aj+i, his second a*+2, etc. Let j i , j 2 , • • • 
be chosen so that 

%n+i = (aoy a>h ' ' • j ah ai+h ' ' ' > ö *+») > 

uotice that i = j \ <j2 <jz < • • • and that j n + i is known as soon as 
ai+n has been played. For each n then, II simulates on the side the 
game Gjn(Xjn+v Xjn) in which the second player has a winning strategy. 
In all these simulated games, the second player follows some winning 
strategy. The first player starts with di+n and then continues by copy­
ing the second player's moves in Gjn+1(xjn+2, Xjn+1) as in the diagram 
below. Finally II copies the second player's move in GJX(XJV Xji) for 
the original game Gi(x, xi). 

l ao, • 

Gjt(xiv xh) ] 
(do, • 

G, 10*7*4 > XH' ) 
(do, 

, ai I(#/2) ai+h a2(l -f 2), a2(l + 3), • • • , a2 

,ai ÏI(xh~Xi) a i ( / + l ) , a i ( / + 2),ai(Z + 3), • • - , a i 

, ai, ai+i I(#y,) ai+2, as(l + 3), • • • , az 

, ai, ai+i H(#y2) cx2(l + 2), a2(l + 3), • • • , a2 

, ai, ai+i, ai+2 Ife4) ai+3, • • • , 0:4 

, at, ai+i, ai+2 !!(#/,) az{l + 3), • • • , as 
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At the end the second players have won all the simulated games and 
reals a, a\, a2, <xz, • • • have been defined. Clearly limit»-* a,=oj, so 
that limit»-*, (aiy Xi) = (a, x). I t is now easy to verify that all norms 
$n(oLif Xi) are constant for all large i, so that Q(a, x), and furthermore 
that II wins Gi(x, Xi), thus completing the proof. 

(ADDED IN PROOF, June 27, 1971.) K. Kunen and D. A. Martin 
have now shown, independently, in ZF+DC+Projective Determinacy, 
that for each odd n, 5n+i^ (ôn)+; their proofs use the methods of this 
note. By entirely different methods D. A. Martin also showed in 
ZF+DC+Full Determinacy, that for each odd n, &i is measurable, 
and K. Kunen showed that under the same hypotheses for all n^ 1, hl

n 

is measurable. 
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