A NONSMOOTHABLE KNOT

BY RICHARD K. LASHOF

Communicated by Saunders Mac Lane, February 1, 1971

In this note we prove the existence of a locally flat topological embedding of S^3 in S^5 , which is not equivalent to a smooth embedding under homeomorphism of S^5 .

The proof depends heavily on the results of Cappell and Shaneson [CS]. In their paper they describe a homotopy equivalence h of $M = S^3 \times S^1 \# r(S^2 \times S^2)$ onto itself, which is not homotopic to a diffeomorphism (Proposition 3.2 and Example 1.6). It is not known whether h can be taken to be a homeomorphism; however $h \times 1: M \times S^1 \to M \times S^1$ is homotopic to a homeomorphism but not a diffeomorphism. Thus the homeomorphism, say $h: M \times S^1 \to M \times S^1$, represents the nontrivial element $\alpha \in \pi_3(\text{Top/PL}) = Z_2$, i.e., the obstruction in $H^3(M \times S^1; \pi_3(\text{Top/PL}))$ to smoothing h, (see [KS] and Remark 2).

Using the trivial normal bundle of $S^3 \subset S^3 \times S^1 \# r(S^2 \times S^2)$, we have a smooth embedding of $S^3 \times R$ in M and $S^3 \times R^2$ in $M \times R$. Now k has a covering map $k: M \times R \to M \times R$, also representing α , since the obstruction depends only on k in a neighborhood of S^3 . We will define a smooth embedding $i: M \times R \to S^5$; then $f = i \circ k \mid S^3 \times R^2 : S^3 \times R^2 \to S^5$ will also represent α , and we will show that $f \mid S^3 \times 0$ is the desired locally flat embedding.

To define i, take a standard embedding of S^3 in S^5 , and then its normal sphere bundle $S^3 \times S^1$ will be smoothly embedded in S^5 with a trivial normal bundle. We may add trivial 2-handles to $S^3 \times S^1 \times I \subset S^5$, to embed M (in fact, the cobordism from $S^3 \times S^1$ to M) in S^5 with a trivial normal bundle. Thus we get our smooth embedding $i: M \times R \rightarrow S^5$.

Now suppose there exists a homeomorphism $g: S^5 \to S^5$ such that $g \circ f \mid S^3 \times 0$ is smooth. By the uniqueness of codimension two normal bundles [K], we may assume $g \circ f: S^3 \times R^2 \to S^5$ is smooth. On the other hand, any homeomorphism of S^5 is isotopic to a diffeomorphism [KS]; say g is isotopic to the diffeomorphism d. Then $d^{-1} \circ g \circ f$ is

AMS 1969 subject classifications. Primary 5701, 5705, 5520, 5478.

Key words and phrases. Knot, locally flat embedding, nonsmoothable, homeomorphism of a manifold.

Reference to [K] may be avoided as follows: $g \circ f(S^3 \times R^2)$ is diffeomorphic to $S^3 \times R^2$ by engulfing, and hence is the trivial smoothing. Therefore, $g \circ f$ is ambient isotopic to a smooth embedding; and thus we may assume $g \circ f$ is smooth.

smooth, but $d^{-1} \circ g$ is isotopic to the identity. Therefore f is isotopic to a smooth embedding, and represents the trivial class in $\pi_3(\text{Top/PL})$. Contradiction. Thus we have proved:

Theorem. There is a locally flat topological embedding $f: S^3 \rightarrow S^5$ which is not equivalent to a smooth embedding; i.e., there exists no homeomorphism g of S^5 such that $g \circ f$ is smooth.

REMARKS. 1. $S^5 - f(S^3)$ cannot be the homotopy type of S^1 , by Stallings' unknotting theorem [S].

- 2. Of course, f is not equivalent to a locally flat piecewise linear embedding either; but since $\pi_3(\text{Top/PL}) = \pi_3(\text{Top/0})$, the obstruction is the same for smoothing [L].
- 3. The smoothing $(S^3 \times R^2)_{\alpha}$ induced by $f: S^3 \times R^2 \to S^5$ is not diffeomorphic to $S^3 \times R^2$ by results of Kirby and Siebenmann. On the other hand, by taking a smooth embedding of S^1 in $S^5 f(S^3 \times 0)$, representing a generator of $H_1(S^5 f(S^3 \times 0))$, we have a smooth embedding $f: (S^3 \times R^2)_{\alpha} \to S^5$ -normal tube of $S^1 = (S^3 \times R^2)_0$; where $(S^3 \times R^2)_0$ is the standard smoothing.
- 4. Since α is of order 2, the embedding $f: S^3 \times R^2 \to S^3 \times R^2$ given in Remark 3 induces $(S^3 \times R^2)_0$ from $(S^3 \times R^2)_\alpha$; i.e., there is a smooth embedding of S^3 in $(S^3 \times R^2)_\alpha$ which is a homotopy equivalence.

It follows that there is also a smooth embedding of S^3 in $(S^3 \times T^2)_{\alpha}$, T^2 the 2-torus, which represents a generator of $\pi_3(S^3 \times T^2)$.

5. There appears to be as many nonsmoothable knots as smoothable ones, since we can take any smooth embedding of S^3 in S^5 to define i.

BIBLIOGRAPHY

[CS] S. Cappell and J. Shaneson, On four-dimensional surgery and applications, Princeton University, Princeton, N. J., 1971. (mimeograph).

[KS] R. C. Kirby and L. C. Siebenmann, On the triangulation of manifolds and the Hauptvermutung, Bull. Amer. Math. Soc. 75 (1969), 742-749. MR 39 #3500.

- [K] R. Kirby, "Codimension-two locally flat embeddings," *Topology of Manifolds* Edited by J. C. Cantrell and C. H. Edwards, Jr., Markham, Chicago, Ill., 1970.
- [L] R. Lashof, *The immersion approach to triangulation and smoothing*, Aarhus Universitet, 1970 (mimeograph). Also: Proc. Sympos. Pure Math., vol. 22, Amer. Math. Soc., Providence, R. I. (to appear).
- [S] J. R. Stallings, On topologically unknotted spheres, Ann. of Math. (2) 77 (1963), 490–503. MR 26~#6946.

University of Chicago, Chicago, Illinois 60637