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ABSTRACT. The systems considered here are those describable 
as continuous functions mapping one compact metric space into 
another. A class of such systems is determinable if the members can 
be distinguished to within a given error by a finite number of ele­
mentary measurements made on the domain and range spaces. 
Such classes are necessarily relatively compact in the uniform 
metric and admit a common modulus of continuity. This announce­
ment provides quantitative estimates of the number of measure­
ments required in terms of the common modulus of continuity of 
the class, and the metric entropy, capacity, and dimension of the 
domain and range spaces. These data are used to construct uniform 
simplicial and polynomial approximations for each member of the 
class, and to provide quantitative estimates for the degrees of the 
approximating polynomials required. 

For many purposes a physical system can be usefully modeled as 
a transfer function of prescribed continuity taking one metric space 
(the input space) into another (the output space). Within this frame­
work, an analysis of the system is an approximate description of this 
function in terms of data taken from the input and output spaces, 
while a synthesis of the system is an approximate realization of the 
function in terms of known elementary functions. One primary pur­
pose of systems studies is to provide effective analysis and synthesis 
procedures for rendering heretofore intractable systems accessible to 
modern computing machinery. We announce here some recent quan­
titative results bearing on the complexity of such procedures; details 
will appear elsewhere [ l ] . 

We denote by X and Y the input and output spaces, respectively. 
We suppose that both X and Y are furnished with a metric, which 
provides a measure of the distinguishability of elements in each of 
these spaces. We assume that the elements of both X and Y can be 
approximated to within any prescribed error by a finite number of 
elements; this assumption forces both X and Y to be (relatively) 
compact metric spaces [2]. 
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By a measurement on X we mean any continuous real-valued 
function defined on X. 

How many measurements are required to distinguish the elements 
of X to within a prescribed error? We know that if X has topological 
dimension n then 2n+l measurements will always suffice [3]. More 
generally, if <p:X—*X' is any continuous function from X to another 
metric space X', then we define the resolution p(<p) of <p by 

(1) p(<p) = sup{d(#, %')\<p{%) = <p(%')}-

Evidently if X' has topological dimension n and <p has resolution 
p(<p) ^ e , then 2n+l measurements will again suffice. Hence we define, 
for each e > 0, the ^-dimension d(e, X) of X by 

(2) d(e, X) = inf{dim <p(X):P(<p) g t} 

where the infimum is taken over all continuous mappings <p of X into 
the Hubert cube. Since X is compact, d(e, X) is finite for every €>0, 
and evidently d(e, X) Î as e I 0. In computing d(e, X) it is useful to 
know that if X contains an isometric copy of an ^-dimensional e-ball, 
then d(2e, X)^n, [4], while if X is contained isometrically in some 
Banach space, then 

(3) d{2e, X) S sup{w:wn-i è «} 

where wn are the Kolmogorov widths of X [5]. If we write b(e, X) for 
the largest b such that X contains a 6-dimensional €-ball, and w(e, -X") 
as the largest n for which wn-\ è €, then 

(4) 6(c, X) ^ d(2c, X) S n(€, X). 

How many elements in X are required to approximate every 
element in X to within a prescribed error? Following Kolmogorov 
[ó], we define, for each €>0 , an e-net in X as a subset {xi\ such that, 
for each x £ X , min {d(x, Xi)} <e. Since X is compact, there are always 
finite e-nets in X. An e-net is optimal if it contains the least possible 
number of elements; we denote this number by iV(€, X) and its log­
arithm log2 iV(e, X) by iJ(e, X) , the (relative) e-entropy of X. Simi­
larly we define, for each e>0 , an ^distinguished set for X as a subset 
{xi} such that min{d(x{, Xj):ijéj}>e. Since X is compact, every 
€-distinguished set in X is finite. An e-distinguished set is optimal if 
it contains the greatest possible number of elements; we denote this 
number by M(e, X) , and its logarithm log2 M(e, X) by C(e, X) , the 
t-capacity of X. The basic relations between these concepts are sum­
marized in [6]; 

(5) H(2ey X) g C(2e, X) S H (e, X). 
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If we wish to approximate every element of X to within €, we shall 
evidently need to construct at least 2C(2e»x) elements, and at most 
2H(e,X) i n X. 

The relations between these concepts and that of the €-dimension 
are less accessible. We know that X always admits an equivalent 
metric for which 

(6) 6(4€, X) ^ B(2e, X) g C(2e, X) ^ d(e, X) log 4(1 + 1/e) 

and that this equivalent metric is assumed if X is a compact subset 
of some Banach space [7]. 

By a system we mean any continuous function ƒ :X—>Y. We asso­
ciate with each such system a modulus of continuity co, defined by 

(7) «(«,ƒ) = sup{d(f(x)}f(x')):d(x, x') < 6} 

which measures the continuity of/. For a given modulus of continuity 
co, we denote by D the set of all systems g whose moduli of continuity 
are dominated by co: 

(8) D= (g:co(ô,g)gco(Ô)}. 

We provide D with the uniform metric: 

(9) d(g, h) « sup{<Z(g(*), *(*)):x(=X} 

and note that, by Arzela's theorem, D is compact in this metric. As a 
consequence, the concepts of €-dimension, e-entropy and e-capacity 
can be introduced for D, and their magnitudes can be estimated in 
terms of the magnitudes of the corresponding concepts for X and F. 
For this purpose we define, for each e > 0, 

(10) Ô = 5(e) = sup{ô':co(ô') g e} 

and prove: 

THEOREM 1 [ l ] . For X, Y and D as above, we have 

(11) H(2e, D) ^ H(e, Y)2H«>*\ 

(12) b(ey F)2™.*> ^ C(2e, Z>), 

(13) d(3e, D) ^ d(e, F ) 2 * ^ > , 

(14) b(e, Y)2C^^ g J(2e, D). 

These results provide us with useful estimates for the magnitude 
of complexity of a system. Given any system/, we first form the class 
D according to (7), with co(5) =co(S, ƒ). Then H(e, D) and C(e, D) 
provide upper and lower bounds for the number of different candi­
dates in D which we must examine in order to find one uniformly 
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within € of/; and n(e, D) provides a lower bound for the dimension of 
any space of elementary systems which we must use in order to 
reconstruct ƒ uniformly to within e. 

In order to approximate ƒ by elementary systems, we must first 
approximate X and F by elementary spaces : 

THEOREM 2. For each ô>0 , there exists a contraction mapping 
<p:X—±Xmy of resolution p(<p)^58, into a simplicial complex Xm of 
dimension m=d(ö, X) with at most (m-\-l)N(8, X) vertices lying in 
general position in R2m+1. 

If 5, m, Xm and <p:X—>Xm are constructed from X as in Theorem 2, 
and e=co(ô), n — n(e> F), Fw and \p\ Y—>Yn are similarly constructed 
from F, then we put 

(15) Dmn = {g:Xm-> Fn:co(ô, g) S «(«)} 

and search for approximate realizations for / in Dmn. 

THEOREM 3. For each e > 0 and f or eachfÇzD, there exists g^Dmn 

such that co(S, g) ^co(S, ƒ), and 

(16) dtyof,gocp) S9e. 

I t follows from this result that any €-net for Dmn provides a lOe-net 
for £>, and hence that 

(17) ff(10€| D) S H(e, Dmn). 

On the other hand, Dmn contains an e-net made up of a finite number 
of simplicial mappings. By counting this number carefully, we obtain 

THEOREM 4. For each e>0 , and ô > 0 with co(ô) = e, and m = d(ô, X) , 

(18) ff(€, Dmn) £ H(e, y)(m + 1)2*<*.*>. 

Finally, Dmn also contains an e-net made up of polynomial map­
pings of bounded degree: 

THEOREM 5. For every gÇzDmn there exists a vector-valued polynomial 
p:R2™+i-»R2n+i 0f t0tai degree k, such that, on Xm 

(19) d(g, p) S const œ(2m + IJk). 

The dimension of the space of these vector-valued polynomials 
provides us with an upper bound for the e-dimension of D: 

THEOREM 6. For each e > 0 we have 

(20) d(e} Dmn) S const(2n + 1)(1 + 1/e)**1. 

These results give us estimates for the size of D in terms of data 
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taken from X and F. In many cases of practical interest estimates for 
these data are already available to us. Thus, for instance, if X and F 
consist of signals which can be described as functions x(t) of time t 
satisfying certain conditions of boundedness and smoothness, then 
estimates for the entropy, capacity, and dimension of X and F can 
be obtained from the work of Kolmogorov and Tihomirov [ó]. In 
particular, if, for some p, q ̂  1, the signals x(t) in X satisfy 

(21) f + O ° | / (0 | 2 ( l+ / 2 )^^ l , 

(22) r \Kk)Hi+k*)<dk^i, 
« J - o o 

where ƒ(k) denotes the Fourier transform oif(t), then we may intro­
duce the effective time width T(e) = (l/e)llp and the effective band width 
W(e) = (l/e)1f«t and obtain 

const T(e)W(e) S <*(4e, X) 

^ C(2€, X) ^ H(e, X) 
(23) 

S d{e, X) log 4(1 + 1/e) 

S const T(e)W(e) log(l + 1/e) 

thereby describing the complexity of such systems in terms of the 
physical constraints imposed on the available signals [8], 
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