A RELATION BETWEEN TWO SIMPLICIAL ALGEBRAIC K-THEORIES

BY S. M. GERSTEN AND D. L. RECTOR

Communicated by Raoul Bott, November 2, 1970
There is a proliferation of proposed algebraic K-theories [5], [6], [8], [11], [12], [13], [15] and one of the present authors can share the blame for three of them. However some rather striking relationships have been found which indicate that the various K-theories, while not the same, are at any rate comparable. This note describes a relation between the K-theory proposed by Quillen [13], which has the advantage of computability using powerful techniques of the homology of groups, and that K-theory defined axiomatically in [8] and constructed semisimplicially in [5], which possesses extremely pleasant functorial properties. It is our hope that this connection will be useful in computing the K-theory of [8], and thus eventually the stable K-theory [7] which is analogous, in this rarefied setting of rings, with stable homotopy theory.

We begin by recalling (in slightly different form from [13]) Quillen's construction. For any ring R, one forms $\boldsymbol{Z}_{\infty} \bar{W}(\mathrm{Gl}(R))$. Here $\mathrm{Gl}(R)$ is regarded as a (constant) simplicial group, \bar{W} is the simplicial classifying space, $[10$, p. 87$]$, and \boldsymbol{Z}_{∞} is the integral completion functor of Bousfield and Kan [2]. Then $K_{i}^{Q}(R)=\pi_{i}\left(Z_{\infty} \bar{W} \mathrm{Gl}(R)\right), i \geqq 1$, where the superscript refers to the author.

In order to give the simplicial definition of [5] of the K-theory of [8], we recall some terminology. One works in the category ring of rings (without unit) and one lets E be the endomorphism of ring, $E R=t R[t]$, the path ring. The morphisms $\epsilon: E \rightarrow I, \mu \rightarrow E^{2}$ given by

$$
\begin{aligned}
\epsilon_{R}: E R & =t R[t] \rightarrow R, & " t & \rightarrow 1, " \quad \text { and } \\
\mu_{R}: E R & =t R[t] \rightarrow t u R[t, u]=E^{2} R, & t & \rightarrow t u,
\end{aligned}
$$

give rise to the cotriple (E, ϵ, μ) in ring. Let $\bar{E} R$ be the augmented semisimplicial complex, $(\bar{E} R)_{n}=E^{n+2} R, n \geqq-1$, constructed from this cotriple, and set

$$
K^{-i}(R)=\tilde{\pi}_{i-2}(\operatorname{Gl}(\bar{E} R)), \quad i \geqq 1
$$

The upper indexing is motivated by topological considerations, and

[^0]$\tilde{\pi}$ refers to the "augmented" homotopy groups [5] ($\tilde{\pi}_{i}=\pi_{i}$ for $i \geqq 1$, the augmentation entering for $i<1$ because of the extra face operator $\left.\epsilon:(\bar{E} R)_{0} \rightarrow(\bar{E} R)_{-1}\right)$.

Consider now the cotriple (P, ϵ, μ) in ring where $P R=R[t], \epsilon_{R}: P R$ $\rightarrow R$ is given by " $t \rightarrow 1$ " and $\mu_{R}: P R=R[t] \rightarrow P^{2} R=R[t, u]$ is given by $t \rightarrow t u$. Let $\bar{P} R$ be the associated augmented semisimplicial complex. Then there is a canonical map

$$
\iota: \operatorname{Gl}(\bar{E} R) \rightarrow \operatorname{Gl}(\bar{P} R)
$$

Also, the complex $\mathrm{Gl}(\bar{P} R)$ is acyclic, so if H is the homogeneous space of the inclusion ι, then $H \simeq \bar{W} \mathrm{Gl}(\bar{E} R)$. We can however identify H explicitly.

Note that $(\bar{P} R)_{n}=P^{n+1} R=R\left[t_{0}, \cdots, t_{n}\right]$ and $(\bar{E} R)_{n}=\left(t_{0} \cdots t_{n}\right)$ $\cdot R\left[t_{0}, \cdots, t_{n}\right]$. Thus we have a short exact sequence of rings

$$
(\bar{E} R)_{n} \rightarrow(\bar{P} R)_{n} \rightarrow Q(R)_{n}
$$

where $Q(R)_{n}=R\left[t_{0}, \cdots, t_{n}\right] /\left(t_{0} \cdots t_{n}\right), n \geqq 0 . Q(R)$ is a simplicial ring, and since Gl is left exact, we have an exact sequence of simplicial groups

$$
1 \rightarrow \mathrm{Gl}(\bar{E} R) \xrightarrow{\iota} \mathrm{Gl}(\bar{P} R) \stackrel{j}{\rightarrow} Q(R)
$$

Theorem 1. The canonical map $H \rightarrow Q R$ is an isomorphism of simplicial groups. In particular, the map j above is surjective.

Note that $Q(R)_{0}=\operatorname{Gl}\left(R\left[t_{0}\right] /\left(t_{0}\right)\right)=\operatorname{Gl}(R)$. Thus we have an imbedding of the constant complex $\operatorname{Gl}(R) \xrightarrow{\alpha} Q(R)$ and hence a map

$$
Z_{\infty} \bar{W}(\alpha): Z_{\infty} \bar{W} \mathrm{Gl}(R) \rightarrow Z_{\infty} \bar{W} Q(R)
$$

Note that by Theorem 1, $\mathrm{Gl}(\bar{E} R)$ is the "second loop group" of $\bar{W} Q(R)$, so we can identify $\pi_{i} \bar{W} Q(R)=K^{-i}(R), i \geqq 1$. In order to proceed further we need

Theorem 2. The action of $\pi_{i} \bar{W} Q(R)$ on $\pi_{n} \bar{W} Q(R)$ is trivial. In particular, $\bar{W} Q(R)$ is "nilpotent" in the terminology of Bousfield and Kan.

This is proved by translating the problem to showing that the action of $\mathrm{Gl}(R)$ on the augmented homotopy groups of $\operatorname{Gl}(\bar{E} R)$ is trivial. This in turn is a generalization of the classical Whitehead lemma, which implies the statement of Theorem 2 for $\tilde{\pi}_{-1}$.

Corollary. [2]. For all i we have

$$
K^{-i}(R) \cong \pi_{i}(\bar{W} Q R) \cong \pi_{i}\left(Z_{\infty} \bar{W} Q R\right)
$$

where the last isomorphism is induced by the canonical map $\vec{W} Q R$ $\rightarrow Z_{\infty} \bar{W} Q R$.

Corollary. The map

$$
\boldsymbol{Z}_{\infty} \bar{W}(\alpha): Z_{\infty} \bar{W} \mathrm{Gl}(R) \rightarrow \boldsymbol{Z}_{\infty} \bar{W} Q R
$$

induces natural homomorphisms $\alpha_{i}: K_{i}^{Q}(R) \rightarrow K^{-i}(R)$ for all $i \geqq 1$.
In low dimensions it is possible to identify α_{i}. Namely, α_{1} is always surjective and corresponds to "reduction modulo unipotents." If R is (left) regular, then α_{1} is an isomorphism by a result of Bass, Heller, and Swan [1] and α_{2} is surjective by [5, Theorem 6.1]. If k is a finite field and $R=k(t)$, then α_{2} is known to be an isomorphism [4]. Also, if R is the rationals, one knows that α_{2} is an isomorphism [9].

References

1. H. Bass, A. Heller and R. G. Swan, The Whitehead group of a polynomial extension, Inst. Hautes Études Sci. Publ. Math. No. 22 (1964), 61-79. MR 30 \#4806.
2. A. K. Bousfield and D. M. Kan, Homotopy with respect to a ring, Proc. Sympos. Pure Math., vol. 22, Amer. Math. Soc., Providence, R. I. (to appear).
3. -, The homotopy spectral sequence of a space with coefficients in a ring (preprint).
4. S. M. Gersten, K-theoretic interpretation of tame symbols on $k(t)$, Bull. Amer. Math. Soc. 76 (1970), 1073-1076.
5. -, On Mayer-Vietoris functors and algebraic K-theory, J. Algebra (to appear).
6. ——On the functor K_{2}. I, J. Algebra (to appear).
7. -, Stable K-theory of discrete rings (to appear).
8. M. Karoubi and O. Villamayor, Foncteurs K^{n} en algèbre et en topologie, C. R. Acad. Sci. Paris Sér. A-B 269 (1969), A416-A419. MR 40 \#4944.
9. -, Groupes d'homotopie algébriques et foncteurs K^{-n}, Institute de Recherche Mathématique Avancée, CNRS, Strasbourg (preprint).
10. J. P. May, Simplicial objects in algebraic topology, Van Nostrand Math. Studies, no. 11, Van Nostrand, Princeton, N. J., 1967. MR $36 \# 5942$.
11. J. Milnor, Algebraic K-theory and quadratic forms, Invent. Math. 9 (1970), 318-344.
12. A. Nobile and O. Villamayor, Sur la K-théorie algêbrique, Ann. Sci. Ecole Norm. Sup. (4) 1 (1968), 581-616. MR 39 \#1526.
13. D. Quillen, Cohomology of groups (preprint).
14. ——, The K-theory associated to a finite field. I (preprint).
15. R. G. Swan, Non-abelian homological algebra and K-theory, Proc. Sympos. Pure Math., vol. 17, Amer. Math. Soc., Providence, R. I., 1970, pp. 88-123.

Rice University, Houston, Texas 77001

[^0]: AMS 1970 subject classifications. Primary 18F25, 55B15, 16A54, 13D15, 55F50.
 Key words and phrases. Algebraic K-theory, the functor Z_{∞}, nilpotent spaces, path ring, simplicial group, cotriple.

