GENERATION OF EQUICONTINUOUS SEMIGROUPS BY HERMITIAN AND SECTORIAL OPERATORS. I

BY ROBERT T. MOORE¹

Communicated by M. H. Protter, September 25, 1970

1. Introduction. This announcement and its sequel [8] conclude a series, beginning with [6] and [7], in which classical Banach-algebraic techniques are adapted to treat problems in operator theory on a general locally convex space (lcs). These announcements provide a representative sampling of the results which will appear, with full proofs and examples, in [9].

The material discussed below is concerned with the more geometrical aspects of the generation and perturbation theory of continuous (and/or holomorphic) semigroups of operators on an lcs. It unifies and extends several earlier lines of development: the Hille-Yosida generation theory and Phillips perturbation theory for C_0 semigroups on B-spaces [1], the norm-estimate theory of holomorphic semigroups on B-spaces developed by Hille and Phillips [1], and the geometric theory of hermitian (selfadjoint) and sectorial generators of unitary groups and holomorphic semigroups respectively (due respectively to Stone [10] and Kato [2] for Hilbert spaces, and to Lumer-Phillips [3] and the author [5] for B-spaces). Applications are illustrated in §5 in the nonclassical setting of various differential operators and evolution equations on test function spaces.

The setting of the present announcement is that of a "calibrated" lcs \mathfrak{X} with a "Lumer geometry" as described in [6] and [7]. By contrast, [8] is concerned with the more topological aspects of the theory, relating earlier work of Schwartz, Yosida, and Komatsu (see [11]) and the theory of "distribution semigroups" to the results discussed below. A primitive version of some of this material was sketched in [5], and references 6 and 7 cited there have been absorbed into the monograph [9].

AMS 1969 subject classifications. Primary 4750, 4748; Secondary 4601.

Key words and phrases. C_0 equicontinuous (semi)group, equicontinuous holomorphic semigroup, infinitesimal generator, semi-inner product, numerical range of an operator, sectorial operator, hermitian operator, Phillips adjoint of an operator, adjoint semigroup, perturbation of semigroup-generators, locally convex topological vector space.

¹ The author gratefully acknowledges partial support of this research by the National Science Foundation, through grants GP 5585, 8964, and 12548.

2. Sectorial operators and holomorphic semigroups. Here $\mathfrak X$ will denote a complex lcs, assumed throughout to be *complete* (some results are true in greater generality). A *calibration* Γ for $\mathfrak X$ is a collection of seminorms p which together induce the topology of $\mathfrak X$. For each angle $0 \le \Phi \le \pi/2$, we regard the symmetric closed sector

$$S_{\Phi} = \{ z \in \mathbf{C} : |\arg z| \leq \Phi \}$$

as an additive topological semigroup with the usual topology.

DEFINITION 1. (a) A family $\{T_z: z \in S_{\Phi}\} \subset \mathfrak{L}(\mathfrak{X})$ of continuous linear operators is a holomorphic semigroup of class Φ or is in $H(\Phi)$, iff

- (i) the map $z \rightarrow T_z$ is a semigroup homomorphism into the multiplicative semigroup of $\mathfrak{L}(\mathfrak{X})$ that carries 0 into I and is weak-operator continuous, and
- (ii) on the interior $\operatorname{int}(S_{\Phi})$ the map is weak-operator holomorphic. (That is, for all $u \in \mathfrak{X}$ and u_* in the dual \mathfrak{X}^* , the map $z \to \langle T_z u, u_* \rangle \in C$ is respectively continuous or holomorphic on the sets specified.)
- (b) If for some calibration Γ , every T_z ($z \in S_{\Phi}$) is a contraction $(p(T_z u) \leq p(u))$ for all $p \in \Gamma$, the semigroup is in $CH(\Phi, \Gamma)$.

REMARK. Essentially the same argument as that used in Chapter 7 of [5] shows that every $CH(\Phi, \Gamma)$ semigroup is "simply continuous" or "strongly continuous" $(z \rightarrow T_z u)$ is continuous from S_{Φ} into \mathfrak{X} for every $u \in \mathfrak{X}$). In the degenerate case $\Phi = 0$, a $CH(0, \Gamma)$ semigroup turns out to be exactly a C_0 equicontinuous semigroup in the sense of Yosida [11]. (One uses Theorem 4 of [6].)

DEFINITION 2. (a) Suppose that $\{T_z: z \in S_{\Phi}\}$ is in $H(\Phi)$. Then $u \in \mathfrak{X}$ is in the domain D(A) of the (infinitesimal) generator A of the semigroup iff there exists a vector $Au \in \mathfrak{X}$ such that

$$\lim \{t^{-1}(T_t u - u): t \to 0 \text{ in } [0, \infty)\} = Au;$$

then we say that A generates the semigroup.

(b) The semigroup is smooth iff $D(A) = \mathfrak{X}$.

If \mathfrak{X} is barreled, then the generator A of a smooth semigroup is continuous. In the B-space setting, such "bounded" generators are very special, but smooth semigroups are typical of problems formulated on the proper locally convex space.

Generators of $CH(\Phi, \Gamma)$ semigroups can be characterized in terms of their numerical ranges as defined in [7]; we recall the main ideas here. If Γ calibrates \mathfrak{X} , then the \mathfrak{X} -part Λ_0 of a Lumer geometry for (\mathfrak{X}, Γ) is defined by selecting a suitable semi-inner product $[\ ,\]_p$ for each $p \in \Gamma$ and setting $\Lambda_0 = \{[\ ,\]_p : p \in \Gamma\}$. Then the \mathfrak{X} -part of the numerical range of A is defined to be

$$W(A, \Lambda_0) = \{ [Au, u]_p : (u, p) \in \mathfrak{X} \times \Gamma \text{ and } p(u) = 1 \}.$$

Using the natural dual calibration Γ_* for \mathfrak{X}^* , one similarly defines an \mathfrak{X}^* -part $\Lambda_1 = \{ [,]_q : q \in \Gamma_* \}$ of a Lumer geometry and an \mathfrak{X}^* -part $W(A^{\circ}, \Lambda_1)$ of the numerical range, where A° denotes the *Phillips adjoint* of A. Then the Lumer geometry is $\Lambda_* = \Lambda_0 \cup \Lambda_1$, and Λ_* -numerical range of A is $W(A, \Lambda_*) = W(A, \Lambda_0) \cup W(A^{\circ}, \Lambda_1)$.

Definition 3. If $0 \le \Phi \le \pi/2$, let

$$\Delta_{\Phi} = \left\{ z \in \mathbf{C} : \pi/2 + \Phi \le \arg z \le 3\pi/2 - \Phi \right\}$$

be the sector "orthogonal to" S_{Φ} (in the sense that their boundaries are perpendicular). Then A is Φ -sectorial with respect to a geometry Λ_* for (\mathfrak{X}, Γ) iff $W(A, \Lambda_*) \subset \Delta_{\Phi}$.

THEOREM 1. Let $0 \le \Phi \le \pi/2$. Then the following conditions on an operator A on a calibrated lcs (\mathfrak{X}, Γ) are equivalent.

- (a) The domain D(A) is dense and A is Φ -sectorial with respect to some geometry Λ_* for (\mathfrak{X}, Γ) .
- (b) The closure \overline{A} of A is a densely defined (dd) operator which is Φ -sectorial with respect to every Λ_* for (\mathfrak{X}, Γ) .
- (c) The closure \overline{A} is a dd operator with Γ -spectrum $\sigma_{\Gamma}(\overline{A}) \subset \Delta_{\Phi}$ and if $d_{\lambda} = \text{dist } (\lambda, \Delta_{\Phi}) > 0$ then $d_{\lambda} \| (\lambda \overline{A})^{-1} \|_{\Gamma} \leq 1$.
 - (d) The closure \overline{A} generates a $CH(\Phi, \Gamma)$ semigroup $\{T_z : z \in S_{\Phi}\}$.
- (e) (Equivalent only when $\Phi > 0$.) There exists a semigroup homomorphism T of $int(S_{\Phi})$ into the unit ball of the Banach algebra $\mathfrak{F}_{\Gamma}(\mathfrak{X})$ such that
 - (i) $D(A) \supset \bigcup \{T_z \mathfrak{X} : z \in \operatorname{int}(S_{\Phi})\}$ and the latter is dense in \mathfrak{X} , and
- (ii) the function $z \to T_z$ is complex-differentiable on $\operatorname{int}(S_{\Phi})$ in the $\|\cdot\|_{\Gamma}$ sense, with $(d/dz)T_z = AT_z$, and admits a $\|\cdot\|_{\Gamma}$ -convergent power series expansion about each $z \in S_{\Phi}$.

Convention. In view of the equivalence of (a) and (b) above, we will simply speak of A as " Φ -sectorial with respect to Γ ," regarding the arbitrary choice of some geometry Λ_* as implicit.

The methods of proof are quite classical. For example, (a) and (b) are proved equivalent by means of Theorem 3 in [7] coupled with the method of Lemmas 3.3 and 3.4 in Lumer-Phillips [3]. Modulo [7], the remaining proofs can be built up from the B-space prototypes simply by using $\|\cdot\|_{\Gamma}$ for the "operator norm".

We recall that \mathfrak{X}° is the strong $(\beta(\mathfrak{X}^*, \mathfrak{X}))$ closure of the domain $D(A^*)$ of the adjoint of A in \mathfrak{X}^* [7]. Let Γ_{\circ} be the calibration on \mathfrak{X}° obtained by restriction from Γ_* .

THEOREM 2. Suppose A satisfies any one of the equivalent conditions in Theorem 1. Then the Phillips adjoint A° generates a $CH(\Phi, \Gamma_{\circ})$

semigroup on \mathfrak{X}° whose values are just the restrictions of the adjoint semigroups $\{T_z^*: z \in S_{\Phi}\}$ to \mathfrak{X}° . Consequently for any geometry Λ_* for $(\mathfrak{X}^{\circ}, \Gamma_{\circ})$, A° is Φ -sectorial.

In some applications, especially those involving nonsmooth semigroups where $D(A^{\circ})$ is difficult to determine, direct calculation of the \mathfrak{X}^* -part $W(A^{\circ}, \Lambda_1)$ of the numerical range is highly impractical, and the following lemma is a more efficient test for Φ -sectoriality.

Lemma 3. A densely-defined operator A is Φ -sectorial with respect to Γ if it satisfies the two conditions:

- (a) the \mathfrak{X} -part $W(A, \Lambda_0) \subset \Delta_{\Phi}$ for some Lumer geometry Λ_* for (\mathfrak{X}, Γ) , and
- (b) the range $(\lambda_0 A)D(A)$ is dense in \mathfrak{X} for some $\lambda_0 \notin \Delta_{\Phi}$.

3. Hermitian operators and Stone's theorem.

DEFINITION 4. A family $\{T_t:t\in R\}\subset \mathfrak{L}(\mathfrak{X})$ is a (weakly) C_0 group iff the families $\{T_t^+=T_t:t\in [0,\infty)\}$ and $\{T_t^-=T_{-t}:t\in [0,\infty)\}$ are H(0) semigroups such that $T_t^+T_t^-=T_tT_{-t}=I$ for all $t\in [0,\infty)$. If for some calibration Γ for \mathfrak{X} every T_t is a Γ -symmetry $[\mathfrak{d}]$, the group is a generalized unitary group or is in $RC_0(\Gamma)$.

DEFINITION 5. (a) The infinitesimal generator A of a C_0 group is that of the positive semigroup $\{T_t^+ = T_t : t \in [0, \infty)\}$, and the group is smooth if $D(A) = \mathfrak{X}$.

(b) An operator H is hermitian with respect to a geometry Λ_* for (\mathfrak{X}, Γ) iff $W(H, \Lambda_*) \subset \mathbb{R}$.

THEOREM 4. Let H be an operator on a calibrated lcs (\mathfrak{X}, Γ) . Then the following are equivalent.

- (a) The domain D(H) is dense in \mathfrak{X} and H is hermitian with respect to some geometry Λ_* for (\mathfrak{X}, Γ) .
- (b) The closure \overline{H} of H is a dd hermitian operator with respect to every Λ_* for (\mathfrak{X}, Γ) .
- (c) The closure \overline{H} is a dd operator with $\sigma_{\Gamma}(H) \subset \mathbb{R}$, and if $\operatorname{Im}(\lambda) \neq 0$, $|\operatorname{Im}(\lambda)| ||(\lambda H)^{-1}||_{\Gamma} \leq 1$.
- (d) The closure $A = (iH)^- = iH$ is the generator of a generalized unitary group.

The theorem follows easily from Theorem 1. (Notice that H is hermitian iff $\pm iH$ are 0-sectorial.) In the same way, one obtains the obvious analog of Theorem 2 for dual groups. An analog of Lemma 3 is also available.

Generalized unitary groups sometimes arise as boundary values of $CH(\pi/2, \Gamma)$ semigroups. (If A is $\pi/2$ -sectorial, H = -iA is hermitian.)

4. Perturbation theorems. In the common setting of a reflexive

calibrated lcs (\mathfrak{X}, Γ) , let us equip $\mathfrak{L}(\mathfrak{X})$ with the topology of simple convergence to form $\mathfrak{L}_{\mathfrak{s}}(\mathfrak{X})$, and pick out the topological subspace

$$\mathfrak{O}_{\Phi}(\Gamma) = \{ A \in \mathfrak{L}_{\mathfrak{s}}(\mathfrak{X}) : A \text{ is } \Phi\text{-sectorial with respect to } \Gamma \}$$

defined by $0 \le \Phi \le \pi/2$. By our remarks after Definition 1, the set $CH(\Phi, \Gamma)$ of holomorphic contraction semigroups can be viewed as a subset of $C(S_{\Phi}, \mathfrak{L}_{\mathfrak{s}}(\mathfrak{X}))$, the continuous functions from S_{Φ} to $\mathfrak{L}_{\mathfrak{s}}(\mathfrak{X})$, and can be endowed with the compact convergence topology.

THEOREM 5. (a) The set $\mathfrak{O}_{\Phi}(\Gamma)$ is a closed cone in $\mathfrak{L}_{\mathfrak{s}}(\mathfrak{X})$.

(b) The map $A \rightarrow \{\text{"exp } zA\text{"}: z \in S_{\Phi}\} = \{T_z: z \in S_{\Phi}\} \text{ from generators to semigroups is continuous from } \mathfrak{O}_{\Phi}(\Gamma) \text{ to } CH(\Phi, \Gamma) \subset C(S_{\Phi}, \mathfrak{L}_s(\mathfrak{X})).$

A comparable theorem is true for generalized unitary groups: the map from the real closed lcs of hermitians to groups-as-functions-on R is continuous.

5. Examples. Let $\mathfrak X$ be the space of C^{∞} functions on R^n with period 1 along each coordinate axis (alias C^{∞} functions on the *n*-torus). For each $1 \le r \le \infty$, we calibrate $\mathfrak X$ with a "topology of L^r -convergence of derivatives", where $\|u\|_r = (\int_K |u|^r dx)^{1/r}$ for $1 \le r < \infty$ and $\|u\|_{\infty} = \sup\{|u(x)| : x \in K\}$ with K the unit cube. Letting $D_j = \partial/\partial x_j$, define

$$p_{r,m}(u) = \sum \left\{ \left\| D_1^{\alpha(1)} \cdot \cdot \cdot D_n^{\alpha(n)} \cdot \cdot \cdot u \right\|_r^2 : \alpha(1) + \cdot \cdot \cdot + \alpha(n) \leq m \right\}^{1/2}$$

and

$$\Gamma(r) = \{p_{r,m}: m = 0, 1 \cdots \}.$$

By a generalized Sobolev lemma, the $\Gamma(r)$ all calibrate the same nuclear Fréchet "test function" topology on \mathfrak{X} , with r=1, 2 and ∞ of primary interest.

EXAMPLE 1. For every $1 \le r \le \infty$, the continuous operators $iD_j \in \mathfrak{L}(\mathfrak{X})$ can be shown by direct calculation to be $\Gamma(r)$ -hermitian. As in Theorem 4 and the remark following Theorem 5, every $D = \sum \alpha_j D_j$ generates a smooth generalized unitary group for $\Gamma(r)$ which translates functions in the direction $(\alpha_i, \dots, \alpha_n)$, and this group varies continuously with respect to the real parameters α_i .

EXAMPLE 2. Various methods (e.g. §6 of [8]) can be used to check that each D_j^2 is at least 0-sectorial (dissipative) for every $\Gamma(r)$, $1 \le r \le \infty$. For r=1 and $r=\infty$, the numerical ranges can be shown to exhaust the entire left half-plane, while by contrast every D_j^2 is $\pi/2$ -sectorial with respect to $\Gamma(2)$, exhibiting the extreme sensitivity of the numerical ranges to choice of calibration. Thus for $\Gamma(2)$ (which has a

unique \mathfrak{X} -part of a Lumer geometry consisting of inner products) every nonnegative combination $L=\sum \alpha_j D_j^2$ generates a smooth holomorphic contraction semigroup in the right half-plane, with generalized unitary boundary group. The choice $\alpha_j=1$, $1\leq j\leq n$, yields the solution to the heat equation on the n-torus, without recourse to ellipticity or "deficiency" arguments. Results for $r\neq 1$, 2, ∞ can be obtained by interpolation.

References

- 1. E. Hille and R. S. Phillips, Functional analysis and semi-groups, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R. I., 1957. MR 19, 664.
- 2. T. Kato, Perturbation theory for linear operators, Die Grundlehren der math. Wissenschaften, Band 132, Springer-Verlag, New York, 1966, §V 3.10 and IX 1.6. MR 34 #3324.
- 3. G. Lumer and R. S. Phillips, Dissipative operators in a Banach space, Pacific J. Math. 11 (1961), 679-698. MR 24 #A2248.
- 4. Robert T. Moore, Measurable, continuous and smooth vectors for semigroups and group representations, Mem. Amer. Math. Soc. No. 78 (1968). MR 37 #4669.
- 5. ——, Duality methods and perturbation of semigroups, Bull. Amer. Math. Soc. 73 (1967), 548-553. MR 36 #5759.
- 6. ——, Banach algebras of operators on locally convex spaces, Bull. Amer. Math. Soc. 75 (1969), 68-73. MR 38 #5018.
- 7. ——, Adjoints, numerical ranges, and spectra of operators on locally convex spaces, Bull. Amer. Math. Soc. 75 (1969), 85-90. MR 39 #805.
- 8. ——, Generation of equicontinuous semigroups by hermitian and sectorial operators. II, Bull. Amer. Math. Soc. (to appear).
- 9. ——, Operator theory on locally convex spaces. I: Banach algebras, states, and numerical ranges (in prep.).
- 10. M. Stone, On one-parameter unitary groups in Hilbert space, Ann. of Math. 33 (1932), 643-648.
- 11. K. Yosida, Functional analysis, Die Grundlehren der math. Wissenschaften, Band 123, Academic Press, New York; Springer-Verlag, Berlin, 1965. MR 31 #5054.

University of Washington, Seattle, Washington 98105