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1. Introduction. This announcement and its sequel [8] conclude a 
series, beginning with [6] and [7], in which classical Banach-algebraic 
techniques are adapted to treat problems in operator theory on a 
general locally convex space (les). These announcements provide a 
representative sampling of the results which will appear, with full 
proofs and examples, in [9]. 

The material discussed below is concerned with the more geo­
metrical aspects of the generation and perturbation theory of con­
tinuous (and/or holomorphic) semigroups of operators on an les. I t 
unifies and extends several earlier lines of development: the Hille-
Yosida generation theory and Phillips perturbation theory for C0 

semigroups on ^-spaces [l ], the norm-estimate theory of holomorphic 
semigroups on ^-spaces developed by Hille and Phillips [ l ] , and the 
geometric theory of hermitian (self ad joint) and sectorial generators of 
unitary groups and holomorphic semigroups respectively (due 
respectively to Stone [lO] and Kato [2] for Hubert spaces, and to 
Lumer-Phillips [3] and the author [5] for 5-spaces). Applications are 
illustrated in §5 in the nonclassical setting of various differential 
operators and evolution equations on test function spaces. 

The setting of the present announcement is that of a "calibrated" 
les 3É with a "Lumer geometry" as described in [ó] and [7]. By con­
trast, [8] is concerned with the more topological aspects of the 
theory, relating earlier work of Schwartz, Yosida, and Komatsu (see 
[ l l ] ) and the theory of "distribution semigroups" to the results dis­
cussed below. A primitive version of some of this material was 
sketched in [5 ], and references 6 and 7 cited there have been absorbed 
into the monograph [9]. 
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2. Sectorial operators and holomorphic semigroups. Here 36 will 
denote a complex les, assumed throughout to be complete (some results 
are true in greater generality). A calibration T for X is a collection of 
seminorms p which together induce the topology of 36. For each angle 
0 ^ $ ^7r/2, we regard the symmetric closed sector 

S * = { * e C : | a r g 2 ; | S $} 

as an additive topological semigroup with the usual topology. 
DEFINITION 1. (a) A family {Tz:zÇES$} C«£(£) of continuous 

linear operators is a holomorphic semigroup of class $ or is in H($), iff 
(i) the map z-*Tz is a semigroup homomorphism into the multi­

plicative semigroup of <£(36) that carries 0 into I and is weak-operator 
continuous, and 

(ii) on the interior int(5$) the map is weak-operator holomorphic. 
(That is, for all ^£3£ and u* in the dual 36*, the map z—>{Tzu, w*)£C 
is respectively continuous or holomorphic on the sets specified.) 

(b) If for some calibration T, every Tz (z£5$) is a contraction 
(P(Tzu) £p(u) for all pET), the semigroup is in CH($, T). 

REMARK. Essentially the same argument as that used in Chapter 7 
of [5] shows that every CH($, T) semigroup is "simply continuous" 
or "strongly continuous" (z-^Tzu is continuous from 5# into 36 for 
every w£36). In the degenerate case * = 0, a CH(0, T) semigroup 
turns out to be exactly a Co equicontinuous semigroup in the sense of 
Yosida [ l l ] . (One uses Theorem 4 of [6].) 

DEFINITION 2. (a) Suppose that {Tz:zÇES$} is in #(<£). Then 
w £ £ is in the domain D(A) of the (infinitesimal) generator A of the 
semigroup iff there exists a vector AuCzlü such that 

\\m{t~l(Ttu -u):t-> 0 in [0, oo)} = Au; 

then we say that A generates the semigroup. 
(b) The semigroup is smooth iff D (A ) = X. 
If 36 is barreled, then the generator A of a smooth semigroup is 

continuous. In the J5-space setting, such "bounded" generators are 
very special, but smooth semigroups are typical of problems formu­
lated on the proper locally convex space. 

Generators of CH(&, T) semigroups can be characterized in terms 
of their numerical ranges as defined in [7]; we recall the main ideas 
here. If T calibrates X, then the 36-part A0 of a Lumer geometry for 
(36, T) is defined by selecting a suitable semi-inner product [, ]p for 
each pET and setting A 0 = { [ , ]P-p£:T}. Then the H-part of the 
numerical range of A is defined to be 

W(A,A0) = {[Au,u]9:(u,p) G Ï X T and p(u) = l } . 
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Using the natural dual calibration T* for 3E*, one similarly defines an 
HL*-part A i = { [ , ]3:<zEr*} of a Lumer geometry and an H*-part 
W(A°, Ai) of the numerical range, where A° denotes the Phillips 
adjoint of A. Then the Lumer geometry is A* = A0WAi, and A*-numerical 
ranged A is W(A,A*) = W(A,A0)yJW(Ao,A1). 

D E F I N I T I O N S . If 0 ^ $ ^ T T / 2 , let 

A $ = { 2 G C:TT/2 + $ ^ arg z S Sir/2 - $} 

be the sector "orthogonal to" 5$ (in the sense that their boundaries 
are perpendicular). Then A is ^-sectorial with respect to a geometry 
A* for (X, r ) iff W(A, A*) CA*. 

THEOREM 1. Let 0^4>^7r/2. r&e# the following conditions on an 
operator A on a calibrated les (3£, T) are equivalent. 

(a) 77*e domain D(A) is dense and A is ^-sectorial with respect to 
some geometry A* for (36, T). 

(b) The closure A of A is a densely defined (dd) operator which is$-
sectorial with respect to every A* for (#, T). 

(c) The closure A is a dd operator with T-spectrum ( r r ( i )CA$ and 
i f 4 = dist(X,A$)>0/^wA||(X-3')-1 | | r^l . 

(d) The closure A generates a CH(&, T) semigroup {Tz'.zÇES*}. 
(e) (Equivalent only when <3?>0.) There exists a semigroup homo-

morphism T of int(5$) into the unit ball of the Banach algebra *Fr(36) 
such that 

(i) -D(-4)DU{ r 2 ï : s £ i n t ( S $ ) } aw J tóe latter is dense in #, and 
(ii) tóe function z—±Tz is complex-differentiable on int(5$) iw the 

| | - | | r sense, with (d/dz)Tz = ATe, and admits a \\-\\r-convergent power 
series expansion about each 2 £ 5 $ . 

CONVENTION. In view of the equivalence of (a) and (b) above, we 
will simply speak of A as "^-sectorial with respect toT" regarding the 
arbitrary choice of some geometry A* as implicit. 

The methods of proof are quite classical. For example, (a) and (b) 
are proved equivalent by means of Theorem 3 in [7] coupled with 
the method of Lemmas 3.3 and 3.4 in Lumer-Phillips [3]. Modulo 
[7], the remaining proofs can be built up from the ^-space prototypes 
simply by using || • || r for the "operator norm". 

We recall that 3£° is the strong (j3(£*, $)) closure of the domain 
D(A*) of the adjoint of A in £* [7]. Let T0 be the calibration on 36° 
obtained by restriction from T*. 

THEOREM 2. Suppose A satisfies any one of the equivalent conditions 
in Theorem 1. Then the Phillips adjoint A° generates a CH($, T©) 
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semigroup on ï 0 whose values are just the restrictions of the adjoint 
semigroups {T*:z£;Sq>} to 36°. Consequently for any geometry A* for 
(36°, T0), Ae is ^-sectorial. 

In some applications, especially those involving nonsmooth semi­
groups where D(A°) is difficult to determine, direct calculation of 
the ï*-part W{A°, Ai) of the numerical range is highly impractical, 
and the following lemma is a more efficient test for $-sectoriality. 

LEMMA 3. A densely-defined operator A is ^-sectorial with respect 
to r if it satisfies the two conditions : 

(a) the H-part W(A, A0) QA$for some Lumer geometry A* for (#, T), and 
(b) the range ÇKQ—A)D(A) is dense in Hfor some Xo$A$. 

3. Hermitian operators and Stone's theorem. 
DEFINITION 4. A family {Tt:tER}C£(X) is a (weakly) C0 group 

iff the families {T+ = Tt:tE[Oy <*>)} and {T; = r_*:*G[0, oo)} are 
H(0) semigroups such that TtTj = TtT-t — I for all ££ [0, oo). If for 
some calibration V for X every Tt is a T-symmetry [6], the group is a 
generalized unitary group or is in RCo(T). 

DEFINITION 5. (a) The infinitesimal generator A of a C0 group is 
that of the positive semigroup { Tf = TtltÇz [0, <*>)}, and the group 
is smooth if D(A) = 3£. 

(b) An operator H is hermitian with respect to a geometry A* for 
( ï , r ) i f f I 7 ( ü , A * ) C # . 

THEOREM 4. Let H be an operator on a calibrated les (J, T). Then 
the following are equivalent. 

(a) The domain D(H) is dense in ï and H is hermitian with respect 
to some geometry A* for ( ï , Y). 

(b) The closure H of H is a dd hermitian operator with respect to 
every A* for (36, T). 

(c) The closure H is a dd operator with ar(H)C.R, and if Im(X) p^O, 
|lm(X)| | |(X-iJH|r:gl : 

(d) The closure A = (iH)" = iH is the generator of a generalized 
unitary group. 

The theorem follows easily from Theorem 1. (Notice that H is 
hermitian iff ±i£Tare O-sectorial.) In the same way, one obtains the 
obvious analog of Theorem 2 for dual groups. An analog of Lemma 3 
is also available. 

Generalized unitary groups sometimes arise as boundary values of 
CH(TT/2, T) semigroups. (If A is 7r/2-sectorial, H= —iA is hermitian.) 

4. Perturbation theorems. In the common setting of a reflexive 
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calibrated les (36, T), let us equip <£(36) with the topology of simple 
convergence to form <£8($), and pick out the topological subspace 

0*(r) = { i G £«(36): A is ^-sectorial with respect to r } 

defined by 0 ^ $ ^ 7 r / 2 . By our remarks after Definition 1, the set 
CH($, T) of holomorphic contraction semigroups can be viewed as a 
subset of C(S$, £S(X)), the continuous functions from 5$ to <£fi(36), 
and can be endowed with the compact convergence topology. 

THEOREM 5. (a) The set 0$(r) is a closed cone in <£s(36). 
(b) The map A—*{ "exp zA" :zÇzS$} = {T z :sG5$} from generators 

to semigroups is continuous from 0$(r) to CH(<&, T)C.C(S<s>, £8(30). 

A comparable theorem is true for generalized unitary groups: the 
map from the real closed les of hermitians to groups-as-functions-on 
R is continuous. 

5. Examples. Let 36 be the space of C00 functions on Rn with period 
1 along each coordinate axis (alias C00 functions on the w-torus). For 
each 1 SrS °° » we calibrate 36 with a "topology of Z/-convergence of 
derivatives", where ||w|| r= (JK\ u\r dx)llr for l ^ r < o o and ||w||oo 
= sup {| u(x) I : x £ i £ J with K the unit cube. Letting Dj = d/dxj, define 

*.-(«) = E {||tfU) • • • D°M • • • «||,*:«(1) + • • • + «(«) Û m}m 

and 

r(f) = {pr.m'.m = 0, 1 • • • }. 

By a generalized Sobolev lemma, the T(r) all calibrate the same 
nuclear Fréchet "test function" topology on 36, with r = 1, 2 and <*> of 
primary interest. 

EXAMPLE 1. For every l ^ r ^ o o , the continuous operators iDj 
G<£(£) can be shown by direct calculation to be r(r)-hermitian. As in 
Theorem 4 and the remark following Theorem 5, every D =]T) ajDj 
generates a smooth generalized unitary group for T(r) which trans­
lates functions in the direction (on, • • • , an), and this group varies 
continuously with respect to the real parameters a». 

EXAMPLE 2. Various methods (e.g. §6 of [8]) can be used to check 
that each D] is at least 0-sectorial (dissipative) for every r ( r ) , 
\SrS °°. For r — 1 and r = <*>, the numerical ranges can be shown to 
exhaust the entire left half-plane, while by contrast every D) is 7r/2-
sectorial with respect to T(2), exhibiting the extreme sensitivity of the 
numerical ranges to choice of calibration. Thus for T(2) (which has a 
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unique 3£-part of a Lumer geometry consisting of inner products) 
every nonnegative combination L =Y1 asD* generates a smooth 
holomorphic contraction semigroup in the right half-plane, with 
generalized unitary boundary group. The choice a y = l , lSj^n, 
yields the solution to the heat equation on the w-torus, without 
recourse to ellipticity or "deficiency" arguments. Results for r ^ l , 
2, oo can be obtained by interpolation. 
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