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1. Introduction. This announcement and its sequel [8] conclude a
series, beginning with [6] and [7], in which classical Banach-algebraic
techniques are adapted to treat problems in operator theory on a
general locally convex space (Ics). These announcements provide a
representative sampling of the results which will appear, with full
proofs and examples, in [9].

The material discussed below is concerned with the more geo-
metrical aspects of the generation and perturbation theory of con-
tinuous (and/or holomorphic) semigroups of operators on an lcs. It
unifies and extends several earlier lines of development: the Hille-
Yosida generation theory and Phillips perturbation theory for C,
semigroups on B-spaces [1], the norm-estimate theory of holomorphic
semigroups on B-spaces developed by Hille and Phillips [1], and the
geometric theory of hermitian (selfadjoint) and sectorial generators of
unitary groups and holomorphic semigroups respectively (due
respectively to Stone [10] and Kato [2] for Hilbert spaces, and to
Lumer-Phillips [3] and the author [5] for B-spaces). Applications are
illustrated in §5 in the nonclassical setting of various differential
operators and evolution equations on test function spaces.

The setting of the present announcement is that of a “calibrated”
lcs X with a “Lumer geometry” as described in [6] and [7]. By con-
trast, [8] is concerned with the more topological aspects of the
theory, relating earlier work of Schwartz, Yosida, and Komatsu (see
[11]) and the theory of “distribution semigroups” to the results dis-
cussed below. A primitive version of some of this material was
sketched in [5], and references 6 and 7 cited there have been absorbed
into the monograph [9].
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2. Sectorial operators and holomorphic semigroups. Here X will
denote a complex Ics, assumed throughout to be complete (some results
are true in greater generality). A calibration T for X is a collection of
seminorms p which together induce the topology of X. For each angle
0=®P=m/2, we regard the symmetric closed sector

Se = {3E C:|args| < &}

as an additive topological semigroup with the usual topology.

DeriNiTION 1. (a) A family { T,:ze&p} C£(¥X) of continuous
linear operators is a holomorphic semigroup of class ® or is in H(®), iff

(i) the map z—7T, is a semigroup homomorphism into the multi-
plicative semigroup of £(¥) that carries 0 into I and is weak-operator
continuous, and

(ii) on the interior int(Ss) the map is weak-operator holomorphic.
(That is, for all €% and ux in the dual %*, the map z—(Tu, ux)EC
is respectively continuous or holomorphic on the sets specified.)

(b) If for some calibration T, every T, (2&Ss) is a contraction
(p(Tu) = p(u) for all pET), the semigroup is in CH(P, T').

REMARK. Essentially the same argument as that used in Chapter 7
of [5] shows that every CH(®, I') semigroup is “simply continuous”
or “strongly continuous” (3—7.u is continuous from Sz into ¥ for
every #E%). In the degenerate case =0, a CH(0, I') semigroup
turns out to be exactly a Co equicontinuous semigroup in the sense of
Yosida [11]. (One uses Theorem 4 of [6].)

DEFINITION 2. (a) Suppose that {T.:2ESs} is in H(®). Then
uE¥X is in the domain D(A4) of the (¢nfinitesimal) generator A of the
semigroup iff there exists a vector A# & X such that

lim{t(Ta — %):t— 0 in [0, )} = Au;

then we say that A generates the semigroup.

(b) The semigroup is smooth iff D(4) =X%.

If X is barreled, then the generator 4 of a smooth semigroup is
continuous. In the B-space setting, such “bounded” generators are
very special, but smooth semigroups are typical of problems formu-
lated on the proper locally convex space.

Generators of CH(®, I') semigroups can be characterized in terms
of their numerical ranges as defined in [7]; we recall the main ideas
here. If T calibrates X, then the X-part Ao of a Lumer geometry for
(%, I) is defined by selecting a suitable semi-inner product [, ], for
each pET and setting Ao={[, ]p:pGI‘}. Then the %X-part of the
numerical range of A is defined to be

W(4,Ay) = {[Au, ul,:(u,p) EXXT and p(u) = 1}.
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Using the natural dual calibration I's for ¥*, one similarly defines an
X*-part Ay={[, ];:¢€ET«} of a Lumer geometry and an X*-part
W(A®, A;) of the numerical range, where A® denotes the Phillips
adjoint of A. Then the Lumer geometry is Ax = A\JA,, and Asx-numerical
range of A is W(A4, Ax) =W(A, L) UW (4%, Ay).

DEFINITION 3. If0S® <7/2, let

Ag = {zE Cix/2+ & < arg s < 3r/2 — B}

be the sector “orthogonal to” Ss (in the sense that their boundaries
are perpendicular). Then 4 is ®-sectorial with respect to a geometry
A, for (X,T) iff W(4, A,) CAs.

THEOREM 1. Let 0P =7/2. Then the following conditions on an
operator A on a calibrated lcs (X, T') are equivalent.

(a) The domain D(A) is dense and A is P-sectorial with respect to
some geomelry Ax for (%, T).

(b) The closure A of A is a densely defined (dd) operator which is ®-
sectorial with respect to every A« for (%, T').

(c) The closure 4 is a dd operator with T'-spectrum or(4) CAs and
if dy=dist (\, As) >0 then da|| A —A)~1||p 1.

(d) The closure A gemerates a CH(®, T') semigroup {Tz:ZESQ}.

(e) (Equivalent only when ®>0.) There exists a semigroup homo-
morphism T of int(Se) into the unit ball of the Banach algebra Fr(¥%)
such that

(i) D(A)DU{T.%:2€int(Ss)} and the latter is dense in %, and

(ii) the function z2—T, is complex-differentiable on int(Ss) in the
|-z sense, with (d/dz)T.=AT., and admits a ||-||r-convergent power
series expansion about each 2E Ss.

CONVENTION. In view of the equivalence of (a) and (b) above, we
will simply speak of 4 as “®-sectorial with respect to T',” regarding the
arbitrary choice of some geometry Ay as implicit.

The methods of proof are quite classical. For example, (a) and (b)
are proved equivalent by means of Theorem 3 in [7] coupled with
the method of Lemmas 3.3 and 3.4 in Lumer-Phillips [3]. Modulo
[7], the remaining proofs can be built up from the B-space prototypes
simply by using || - || r for the “operator norm”.

We recall that ¥° is the strong (B(%*, ¥)) closure of the domain
D(4%) of the adjoint of 4 in ¥* [7]. Let T, be the calibration on %¥°
obtained by restriction from I'x.

THEOREM 2. Suppose A satisfies any one of the equivalent conditions
in Theorem 1. Then the Phillips adjoint A® generates a CH(®, T'o)
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semigroup on X° whose values are just the restrictions of the adjoint
semigroups {T:‘ :ZESq:} to X°. Consequently for amy geometry Ax for
(%°, T'o), A° is P-sectorial.

In some applications, especially those involving nonsmooth semi-
groups where D(4°) is difficult to determine, direct calculation of
the ¥*-part W(A4°®, A;) of the numerical range is highly impractical,
and the following lemma is a more efficient test for ®-sectoriality.

LeMMA 3. A densely-defined operator A is P-sectorial with respect
to I 1f it satisfies the two conditions:

(a) theX-part W(A4, Ao) CAs for some Lumer geometryA, for (X,T'),and

(b) the range \No— A)D(A4) is dense in X for some No€EAs.

3. Hermitian operators and Stone’s theorem.

DEFINITION 4. A family {T::t€R}C£(¥) is a (weakly) C, group
iff the families {77 =T::t€[0, ©)} and {77 =T_.:t€[0, )} are
H(0) semigroups such that 77T, =T:T_;=1 for all t& [0, «). If for
some calibration T for ¥ every T is a I'-symmetry [6], the group is a
generalized unitary group or is in RCo(T').

DEerFINITION 5. (a) The infinitesimal generator 4 of a C, group is
that of the positive semigroup {77 =T,:t€[0, =) }, and the group
is smooth if D(4) =¥X.

(b) An operator H is hermitian with respect to a geometry Ax for
(%, 1) iff W(H, A+)CR.

THEOREM 4. Let H be an operator on a calibrated lcs (X, T'). Then
the following are equivalent.

(a) The domain D(H) is dense in X and H is hermitian with respect
to some geometry A for (X, T").

(b) The closure H of H is a dd hermitian operator with respect to
every Ay for (X, T).

(c) The closure H is a dd operator with or(H) CR, and if Im(\) #0,
[Im)] |0 —E)Yr=t.

(d) The closure A= (GH)~=1H 1is the generator of a generalized
unitary group.

The theorem follows easily from Theorem 1. (Notice that H is
hermitian iff +4H are 0-sectorial.) In the same way, one obtains the
obvious analog of Theorem 2 for dual groups. An analog of Lemma 3
is also available.

Generalized unitary groups sometimes arise as boundary values of
CH(w/2,T) semigroups. (If 4 is w/2-sectorial, H= —44 is hermitian.)

4. Perturbation theorems. In the common setting of a reflexive
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calibrated Ics (%, I'), let us equip £(¥) with the topology of simple
convergence to form &£,(¥X), and pick out the topological subspace

0s(T) = {4 € £,(%): 4 is ®-sectorial with respect to I'}

defined by 0=®=w/2. By our remarks after Definition 1, the set
CH(®, T') of holomorphic contraction semigroups can be viewed as a
subset of C(Ss, £:(¥)), the continuous functions from Ss to £.(%),
and can be endowed with the compact convergence topology.

THEOREM 5. (a) The set 0s(I") s a closed cone in £,(¥).
(b) The map A—{“exp 3A4”:3E€Ss} = { T,:2ESs} from generators
to semigroups is continuous from 0s(T) to CH(®, T') CC(Ss, £:(%)).

A comparable theorem is true for generalized unitary groups: the
map from the real closed Ics of hermitians to groups-as-functions-on
R is continuous.

5. Examples. Let ¥ be the space of C* functions on R* with period
1 along each coordinate axis (alias C* functions on the #n-torus). For
each 1 =7 =< «, we calibrate ¥ with a “topology of L -convergence of
derivatives”, where ||u|l.=(fx|u|" dx)Vr for 1<r< o and ||
=sup{ lu(x)] :xEK} with K the unit cube. Letting D;=09/0x;, define

1/2

prm(@) = ZAIDTY - DI drie) + - -+ a(n) < m)
and
() = {prmim =0,1---}.

By a generalized Sobolev lemma, the T'(r) all calibrate the same
nuclear Fréchet “test function” topology on %, with r=1, 2 and « of
primary interest.

ExampLE 1. For every 1=<r= », the continuous operators ¢D;
€ £(%) can be shown by direct calculation to be I'(r)-hermitian. As in
Theorem 4 and the remark following Theorem 5, every D= a;D;
generates a smooth generalized unitary group for I'(#) which trans-
lates functions in the direction (e, - - + , @.), and this group varies
continuously with respect to the real parameters ;.

EXAMPLE 2. Various methods (e.g. §6 of [8]) can be used to check
that each D] is at least O-sectorial (dissipative) for every I'(r),
1=<r= . For r=1 and 7= «, the numerical ranges can be shown to
exhaust the entire left half-plane, while by contrast every D7 is w/2-
sectorial with respect to I'(2), exhibiting the extreme sensitivity of the
numerical ranges to choice of calibration. Thus for I'(2) (which has a
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unique ¥-part of a Lumer geometry consisting of inner products)
every nonnegative combination L=Z a;D; generates a smooth
holomorphic contraction semigroup in the right half-plane, with
generalized unitary boundary group. The choice a;=1, 1=<j<n,
yields the solution to the heat equation on the n-torus, without
recourse to ellipticity or “deficiency” arguments. Results for r>1,
2, « can be obtained by interpolation.
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