
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 77, Number 2, March 1971 

ON THE BRAUER-SPEISER THEOREM1 
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Let 9C be an absolutely irreducible rational valued character of a 
finite group G. The component of the group algebra QG corresponding 
to 9C is central simple over Q and the QG-irreducible module of this 
component affords the character w@(9C)9C which is also rational 
valued; hence this module is isomorphic to its dual, whence its e n d o 
morphism ring (i.e. the division algebra appearing in the simple 
component) is isomorphic to its opposite and so is a quaternion alge­
bra (Albert-Hasse-Brauer-Nöether). This result is known as the 
Brauer-Speiser Theorem [ l ] , [2].2 

We ask: Does every quaternion division algebra central simple 
over Q appear in some QG? The answer is yes: Let G be generated 
by x, y, c subject to the relations xp = l (p odd), y~1xy=xa (a is 
primitive mod p), yp~1 = c, c2 = l and c central. Then QG contains as 
a simple component the cyclic algebra (Q(£p), (r), — 1), which is c.s. 
over Q and has Hasse-invariant 1/2 at (R and p. The quaternion 
group of order 8 yields the ordinary quaternion algebra (Hasse-
invariant 1/2 at (R and 2) and so, by taking tensor products, we see 
that every quaternion algebra is available.3 
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8 This result has also been obtained independently by Mark Benard. 
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