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Let T denote the circle and / a closed ideal of LX{T) under convolu­
tion. Let 5T denote the set of sequences of complex numbers which 
are Fourier transforms of elements of I . 

S I = {(fc): 3 / G / , ƒ(») = &}• 

A subset E of the integers is called a set of interpolation for the multi­
pliers of $1 ( = M($I)) if every bounded complex sequence denned on 
E is the restriction to E of a multiplier of $1. E is called a Sidon set 
if every bounded complex sequence on E is the restriction to E of the 
Fourier transform of some measure on T. Answering a question of 
Y. Meyer we show here that every set of interpolation EQZ+ for 
M($Hl(T)) is a Sidon set. 

Let A (T) denote the Banach space of all analytic continuous func­
tions on T equipped with the supremum norm. Let fi = Hl{T)®C(T) 
be the Banach space of all elements of A{T) which can be expressed 
in the form ^?fk*gk where fh£:Hl(T), gkÇ:C(T) and such that 
S i * ll/*l|i||g*IU< °°- The norm || -\\p in /Î is the infimum over all such 
representations. Meyer [ l ] has shown that the dual of ]3 is precisely 
M($Hl(T)). 

THEOREM 1. ft is isometrically isomorphic to A{T). 

PROOF. I t is clear that the natural embedding of (J in A (T) is norm 
decreasing. Let P(0) = ^ ï a,kexp[inkO] be an arbitrary analytic trig­
onometric polynomial and write eiMeP{6) as 

E ( l - - ^ ) exp[i(n + N)0] * £ h exp[i(nk + M)0] 

where bh = ah{\-\nh+M-N\/N}-\ Choose M = N- [iV1'2] and 
N larger than nv. I t is clear that as N-* oo, bk—^ak for each k. Since the 
polynomial on the left-hand side is just a translate of the usual Fejer 
kernel, it has Ll norm equal to 1. By the choice of My the sup norm 
of the polynomial on the right-hand side tends to HP^H* as N—>oo. 
Hence 

| |«p[t i f0]p(*) | | , < | | P ( 0 ) | | „ + * 
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for N sufficiently large. 
I t is clear that | | P ( ô ) | ^ | | e x p [iMd]P(6)\\p for all positive integers 

M. Hence ||P(0)||/3^||P(0)||oo. Since the analytic trigonometric poly­
nomials are dense in /3 the theorem follows. 

The following answers a question raised in [l, p. 554]. 

COROLLARY. E(ZZ+ is a set of interpolation for M($Hl(T)) if and 
only if E is a Sidon set. 

PROOF. The only implication of interest is the "only i f one. Thus 
assume E is a set of interpolation for M($Hl(T)). I t is an easy conse­
quence of the definition that £ is a set of interpolation for M($Hl(T)) 
if and only if the elements of j3 whose spectra are contained in E have 
absolutely convergent Fourier series. Hence there is some constant c, 
depending only on E, such that 

£ \ak\ ^c\\P(6)\U 

for all trigonometric polynomials P(0) = XX» i a*> exp[wfc0] with spec­
trum contained in E. Since ||P(0)||oo = ||P(ö)|U E is a Sidon set (cf. 
[3, p. 121]). Q.E.D. 

I t is of some interest to compare the above notions of interpolation 
in M(31) with the following definition implicit in [ l ] : E is said to be 
a set of E-interpolation if every bounded complex sequence on E is 
the restriction to E of a multiplier of $I(E) where 1(E) is the ideal 
of all L1 functions whose spectrum is contained in E. The concept of 
Sidon set is replaced here by that of A(2) set. Recall that E is a A(2) 
set if every L1 function whose spectrum is contained in E is in L2. 

THEOREM 2. Eis a set of E-interpolation if and only if it is a A (2) set. 

PROOF. The fact that A(2) sets are sets of E-interpolation is an 
immediate consequence of the Riesz-Fisher theorem. 

Conversely if E is a set of E-interpolation and P(0) = X a * exp [inkd] 
is an E-polynomial define g(t, 0) = ^ak<pk(t) exp [inkd] where <pk is the 
feth Rademacher function. Then gt = st*f where st is the convolution 
operator from 1(E) to LX(T) such that st(wk) =<Pk(t). 

Let IOO,E denote the quotient space of /«> by the closed subspace of 
those sequences vanishing on E. Then since E is a set of E-interpola­
tion, the natural map a:M(^I(E))—>lO0tE is onto, and hence has a 
bounded inverse. Thus ||s f | | ^c where c is independent of t> and 
||g«||i^c||/| |i. The proof now proceeds as in Theorem 3.1 of [2]. 

Integrate (Y,\ak\
2)mS2jl\g(t1 6)\ dt with respect to 0 over 

[—7T, w] and use the above inequality. 
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REMARK. In direct analogy to the space j3, /?# = 1(E) ®C(T) may 
be formed. I t may be of interest to ask for what sets E it is true that 
whenever FQE, F is a. set of M($I(E)) interpolation if and only if it 
is Sidon. By Theorem 2 this will fail if E = F and E is taken to be a set 
which is A(2) but not Sidon. 
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