SETS OF INTERPOLATION FOR MULTIPLIERS

BY BENJAMIN B. WELLS, JR.

Communicated by Ray A. Kunze, June 3, 1970

Let T denote the circle and I a closed ideal of $L^1(T)$ under convolution. Let $\mathfrak{F}I$ denote the set of sequences of complex numbers which are Fourier transforms of elements of I.

$$\mathfrak{I} = \{(\xi_n) \colon \exists f \in I, \quad \hat{f}(n) = \xi_n\}.$$

A subset E of the integers is called a set of *interpolation* for the multipliers of $\mathfrak{F}I$ (= $M(\mathfrak{F}I)$) if every bounded complex sequence defined on E is the restriction to E of a multiplier of $\mathfrak{F}I$. E is called a *Sidon* set if every bounded complex sequence on E is the restriction to E of the Fourier transform of some measure on E. Answering a question of E. Meyer we show here that every set of interpolation $E \subseteq \mathbb{Z}^+$ for $E \subseteq \mathbb{Z}^$

Let A(T) denote the Banach space of all analytic continuous functions on T equipped with the supremum norm. Let $\beta = H^1(T) \hat{\otimes} C(T)$ be the Banach space of all elements of A(T) which can be expressed in the form $\sum_{1}^{\infty} f_k * g_k$ where $f_k \in H^1(T)$, $g_k \in C(T)$ and such that $\sum_{1}^{\infty} ||f_k||_1 ||g_k||_{\infty} < \infty$. The norm $||\cdot||_{\beta}$ in β is the infimum over all such representations. Meyer [1] has shown that the dual of β is precisely $M(\mathfrak{F}H^1(T))$.

THEOREM 1. β is isometrically isomorphic to A(T).

PROOF. It is clear that the natural embedding of β in A(T) is norm decreasing. Let $P(\theta) = \sum_{1}^{\nu} a_{k} \exp[in_{k}\theta]$ be an arbitrary analytic trigonometric polynomial and write $e^{iM\theta}P(\theta)$ as

$$\sum_{n=-N}^{N} \left(1 - \frac{|n|}{N}\right) \exp[i(n+N)\theta] * \sum_{k=1}^{p} b_k \exp[i(n_k+M)\theta]$$

where $b_k = a_k \{1 - |n_k + M - N|/N\}^{-1}$. Choose $M = N - [N^{1/2}]$ and N larger than n_r . It is clear that as $N \to \infty$, $b_k \to a_k$ for each k. Since the polynomial on the left-hand side is just a translate of the usual Fejer kernel, it has L^1 norm equal to 1. By the choice of M, the sup norm of the polynomial on the right-hand side tends to $||P(\theta)||_{\infty}$ as $N \to \infty$. Hence

$$\|\exp[iM\theta]P(\theta)\|_{\beta} < \|P(\theta)\|_{\infty} + \epsilon$$

AMS 1969 subject classifications. Primary 4258; Secondary 4205. Key words and phrases. Multiplier, Sidon set, $\Lambda(2)$, set of interpolation.

for N sufficiently large.

It is clear that $||P(\theta)||_{\beta} \leq ||\exp[iM\theta]P(\theta)||_{\beta}$ for all positive integers M. Hence $||P(\theta)||_{\beta} \leq ||P(\theta)||_{\infty}$. Since the analytic trigonometric polynomials are dense in β the theorem follows.

The following answers a question raised in [1, p. 554].

COROLLARY. $E \subset Z^+$ is a set of interpolation for $M(\mathfrak{F}H^1(T))$ if and only if E is a Sidon set.

PROOF. The only implication of interest is the "only if" one. Thus assume E is a set of interpolation for $M(\mathfrak{F}H^1(T))$. It is an easy consequence of the definition that E is a set of interpolation for $M(\mathfrak{F}H^1(T))$ if and only if the elements of β whose spectra are contained in E have absolutely convergent Fourier series. Hence there is some constant c, depending only on E, such that

$$\sum_{k=1}^{\nu} |a_k| \leq c ||P(\theta)||_{\beta}$$

for all trigonometric polynomials $P(\theta) = \sum_{k=1}^{r} a_k \exp[in_k \theta]$ with spectrum contained in E. Since $||P(\theta)||_{\infty} = ||P(\theta)||_{\beta}$, E is a Sidon set (cf. [3, p. 121]). Q.E.D.

It is of some interest to compare the above notions of interpolation in $M(\mathfrak{F}I)$ with the following definition implicit in [1]: E is said to be a set of E-interpolation if every bounded complex sequence on E is the restriction to E of a multiplier of $\mathfrak{F}I(E)$ where I(E) is the ideal of all L^1 functions whose spectrum is contained in E. The concept of Sidon set is replaced here by that of $\Lambda(2)$ set. Recall that E is a $\Lambda(2)$ set if every L^1 function whose spectrum is contained in E is in L^2 .

Theorem 2. E is a set of E-interpolation if and only if it is a $\Lambda(2)$ set.

PROOF. The fact that $\Lambda(2)$ sets are sets of *E*-interpolation is an immediate consequence of the Riesz-Fisher theorem.

Conversely if E is a set of E-interpolation and $P(\theta) = \sum a_k \exp[in_k \theta]$ is an E-polynomial define $g(t, \theta) = \sum a_k \varphi_k(t) \exp[in_k \theta]$ where φ_k is the kth Rademacher function. Then $g_t = \hat{s}_t * f$ where s_t is the convolution operator from I(E) to $L^1(T)$ such that $s_t(\pi_k) = \varphi_k(t)$.

Let $l_{\infty,E}$ denote the quotient space of l_{∞} by the closed subspace of those sequences vanishing on E. Then since E is a set of E-interpolation, the natural map $\sigma: M(\mathfrak{F}I(E)) \to l_{\infty,E}$ is onto, and hence has a bounded inverse. Thus $||s_t|| \leq c$ where c is independent of t, and $||g_t||_1 \leq c||f||_1$. The proof now proceeds as in Theorem 3.1 of [2].

Integrate $(\sum |a_k|^2)^{1/2} \le 2\int_0^1 |g(t, \theta)| dt$ with respect to θ over $[-\pi, \pi]$ and use the above inequality.

REMARK. In direct analogy to the space β , $\beta_E = I(E) \hat{\otimes} C(T)$ may be formed. It may be of interest to ask for what sets E it is true that whenever $F \subset E$, F is a set of $M(\mathfrak{F}I(E))$ interpolation if and only if it is Sidon. By Theorem 2 this will fail if E = F and E is taken to be a set which is $\Lambda(2)$ but not Sidon.

REFERENCES

- 1. Y. Meyer, Endomorphismes des idéaux fermés de $L^1(G)$, classes de Hardy et séries de Fourier lacunaires, Ann. Sci. École Norm. Sup. (4) 1 (1968), 499–580. MR 39 #1910.
- 2. W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-227. MR 22 #6972.
- 3. ——, Fourier analysis on groups, Interscience tracts in Pure Appl. Math., no. 12, Interscience, New York, 1962. MR 27 #2808.

University of Oregon, Eugene, Oregon 97403

Universidad Tecnica del Estado, Santiago, Chile