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1. Relationships between methods of convergences and the growth 
of coefficients. It was shown by Paul J. Cohen [l] that if a multiple 
trigonometric series converges regularly at almost every point of the 
&-torus 2nfc=[—7T, 7r]X • • • X [—7T, 7r], then its coefficients an 

=ani,...fnib cannot exhibit exponential growth. A particular form of 
regular convergence is square convergence. Consideration of double 
series of the form 

00 

2 * W ( 1 - cosa;)Vnv 

n-1 

shows that Cohen's seemingly gross estimates cannot be improved. 
For by a suitable choice of the <f>{n) the series may be made square 
convergent almost everywhere while having coefficients which grow 
faster than any given sequence whose growth is less than exponential. 

THEOREM 1. If a multiple trigonometric series converges unrestrict­
edly rectangularly on a set, then the coefficients are necessarily bounded; 
furthermore, an^arn,...,^—*0 as min{\ni\, • • • , \nic\ } =||n||—»oo. 

Again this theorem is best possible. The proof is by induction and 
makes use of 

LEMMA 1. If a polynomial P(eix) of degree n is bounded for all 
x(EE(Z [O, 2w) by a bound B, where \E\ —Lebesgue measure of E = ô>0, 
then there is a number c = c(ô, n) such that \ P(eix) \ Scfor every x. 

The lemma is an easy consequence of the Lagrange interpolation 
formula and a lemma of Paul Cohen's [l, p. 41 ]. Another consequence 
of Lemma 1 is 
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THEOREM 2. If a multiple trigonometric series 2 converges unre­
strictedly rectangularly on a subset E of Tk

f then there is a set FQE, 
\F\ = | E\ such that all the rectangular partial sums of 2 are bounded on 
F. (The bound may vary from point to point.) In particular> if E — Tk

f 

then F ^E. 

To appreciate that this theorem is trivial only if & = 1, the reader 
should consider the numerical double series given by aon = n, a\n = — n, 
n — 1, 2, 3, • • • , amM = 0 otherwise which converges unrestictedly 
rectangularly to 0, but has unbounded rectangular partial sums. The 
proof of Theorem 2 is also an induction which depends heavily on 
Lemma 1. 

2. Relationships between modes of convergence and summability. 

THEOREM 3. If a multiple trigonometric series 2 converges unre­
strictedly rectangularly on a set E, then 2 is spherically Abel summable 
to the same values on F, where E and Fare as in Theorem 2. 

This theorem is an easy consequence of Theorem 2 and the fact 
that Pringsheim convergence (unrestricted rectangular convergence 
together with bounded rectangular partial sums) implies spherical 
Abel summability for numerical multiple series. (We say ^an is 
spherically Abel summable to 5 if ^2ane^n^h=A(h) exists for every 
h > 0 and lim^0+ A (h) = s.) 

Theorem 3 is somewhat surprising since different modes of con­
vergence are often incompatible. For example, the double series 

00 

X 3p exp[ip2x] (sin y)2» exp[i(p2 - 2p)y] 
2,-2 

is square convergent almost everywhere but restrictedly rectangularly 
convergent at no point; while the double series 

00 

X)2^exp[f4^] (sin;y)2P 

is restrictedly rectangularly convergent almost everywhere but both 
circularly and triangularly divergent everywhere. We do have, how­
ever, 

THEOREM 4. If a multiple trigonometric series converges on E> then it 
is (C, 1, 1) summable on F, where E and F are as in Theorem 2. 

The proof is again Theorem 2 together with a classical theorem 
concerning numerical series. There are many similar classical the-
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orems in which the hypothesis of bounded partial sums may be 
dropped. I t would be repetitious to list any more of them here. 

3. Uniqueness of multiple trigonometric series. 

THEOREM 5. Let the double trigonometric series 2 be unrestrictedly 
rectangularly convergent everywhere on T2 to the finite-valued Lebesgue 
integrable function f (x, y). Then 2 is the Fourier series off. 

The proof of Theorem 5 involves the use of a uniqueness theorem 
concerning spherical Abel summability due to Victor Shapiro ([5] or 
[6, pp. 65-78]). The hypotheses in Shapiro's theorem that must be 
verified are 

(i) 2 is spherically Abel summable everywhere to ƒ(#, y), 
and 

(ii) the sum of the moduli of the coefficients of S whose indices lie 
in an annulus of thickness one and radius R is o(R) as R tends to 
infinity. 

The first hypothesis is satisfied because of Theorem 3 while the 
second follows from Theorem 1. Condition (ii) does not follow from 
Theorem 1 if the dimension k is > 2 which is why the theorem is 
stated only in two dimensions. A somewhat more general version of 
Theorem 5 involving upper and lower limits actually holds but it is 
too complicated to state here. In higher dimensions, we have the 
following uniqueness theorem. 

THEOREM 6. Suppose for every (xu • • • ,#*)=x, 
Ni Nk-l Nk 

lim X) * * * ]C ]C 0n1,...,nJfcexp[i(^iffi+ • • • + »***)] 

= X) an exp[m*x] = 0. 

Then all the ani,..., nk are zero. 

The statement is given in a fairly specific fashion since it is not clear 
a t the present time whether the restriction that all but one of the 
sums be one-sided is necessary. A uniqueness theorem for multiple 
trigonometric series of power series type is an immediate corollary. 

To prove Theorem 6 form a sequence of functions LQ(X) = 
Tl an exp [ in-x] , Li(x), • • • , Lk(x) where each Li is obtained by two 
formal integrations in the i th coordinate. The facts that the second ith 
partial symmetric derivative of Li is equal to £,-_! and that L» is a 
continuous function of its ith variable are used to establish that the 
continuous function Lk(x) has a special form from whence it follows 
that Lk and hence Lo have all coefficients equal to zero. 
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Another approach to the theory of uniqueness may be made by 
considering Lk(x) directly and working with a &th symmetric deriva­
tive directly. This method, which has been pursued by Geiringer [2] 
and 2ak [8] does yield some interesting partial results but not as yèt a 
theory of uniqueness. 

A fourth approach to uniqueness is via generalized "integrals" 
wherein the first "integral" is a vector (Shapiro [7]), the second 
"integral" is a matrix, the third a three tensor, and so forth. A partial 
result arising from this study is that 

„ A (m sin mh + n sin nh\a 

Hm 2 , Isdmnl ) = * 
a-o m«0 n»o \ (m2 + n2)h / 

whenever a > 2 a n d ^ X / ^ n = 5 in the sense of Pringsheim. 

4. On the almost everywhere summability of double Fourier series. 
The Fourier series S[f] of f(x, y)ÇzL(T2) is said to be summable 
(C9a,P)*t(x,y)it 

lim —f f fix -s,y- t)Kl(s)ld(t)dsdt = ƒ(*, y), 

where K^(s) is the ath Fejér kernel. (See Zygmund [9, p. 94].) 
Jessen, Marcinkiewicz, and Zygmund [4] have proved that if a > 0 

and j3>0, and if ƒ £ L log +L on T2, then ƒ is summable (C, a, j3) at al­
most every point of T2. If /3 = 0, we set 

0 sin(n + i)t 
Klit) - Z>w(0 = 2 sin //2 

THEOREM 7. If /£Z,(log +L)2 on T2 and ifa>0, then f is summable 
(C, a, 0) almost everywhere on T2. 

The proof uses maximal functions and is an easy corollary of a one-
dimensional maximal theorem of Hunt [3] concerning convergence in 
the theory of functions of one variable. 
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