SOME INTRICATE NONINVERTIBLE LINKS

BY WILBUR WHITTEN

Communicated by N. E. Steenrod, April 15, 1970

Let L be an oriented, ordered link imbedded in the oriented 3-sphere S^3 , and let μ and κ be integers such that $1 \le \kappa < \mu$. We say that L is a generalized noninvertible link for the pair μ , κ (or a $(\mu, \kappa)I$ link) if it satisfies:

- (i) L has μ components;
- (ii) Each sublink with κ or fewer components is invertible;
- (iii) Each sublink with more than κ components is noninvertible.

L is *invertible* provided it is of the same (oriented) type as its inverse. The *inverse* of L is obtained by reversing the orientation of each component of L.

Now (2, 1)I links were exhibited in [2] and a $(\mu, \mu-1)I$ link was given in [3] for each $\mu \ge 3$. In this announcement we outline the construction of a generalized noninvertible link for each pair μ , κ such that $1 \le \kappa < \mu$ and $\mu \ge 3$. Details will appear elsewhere.

1. Two propositions. The following propositions clear the way for the constructive type proof of the main Theorem 2.1. An induction argument together with results of [2] yields a proof of

PROPOSITION 1.1. For each integer $\mu \ge 2$, there exists a $(\mu, 1)I$ link in S^3 .

The combined contents of [2] and [3] are stated in

PROPOSITION 1.2. For each integer $\mu \ge 2$, there exists a $(\mu, \mu-1)I$ link in S^3 .

2. $(\mu, \kappa)I$ links. The main result is

THEOREM 2.1. For each pair of integers μ , κ such that $1 \le \kappa < \mu$, there is a generalized noninvertible link \mathcal{L} in S^3 satisfying (i), (ii), and (iii) of the introduction.

OUTLINE OF CONSTRUCTION. By Propositions 1.1 and 1.2, we need consider only those integers μ , κ for which $2 \le \kappa < \mu - 1$. We relax this, however, and assume only that $2 \le \kappa < \mu$.

Set $\nu = {n-1 \choose \kappa}$. Let Q_1, \ldots, Q_{ν} be a collection of disjoint 3-cells in S^3

AMS 1970 subject classifications. Primary 55A25; Secondary 55A10.

Key words and phrases. Classical knot theory, noninvertible knots and links.

each of which is in the shape of a solid cylinder. In each Q_l , $(l=1, \ldots, \nu)$, construct the oriented, ordered link

$$L_{l} = (l, 1) \cup \cdots \cup (l, \alpha_{l2} - 1) \cup (l, \alpha_{l2}) \cup \cdots \cup (l, \alpha_{l\kappa+1})$$

as shown in Figure 1. (Two small arcs of each component are to lie on ∂Q_l as indicated with the remainder of L_l in Int Q_l .) The set $\{\alpha_{l2}, \ldots, \alpha_{l\kappa+1}\}$ is the *l*th combination of the integers $2, \ldots, \mu$ taken κ at a time, and in the lexicographical ordering of these combinations.

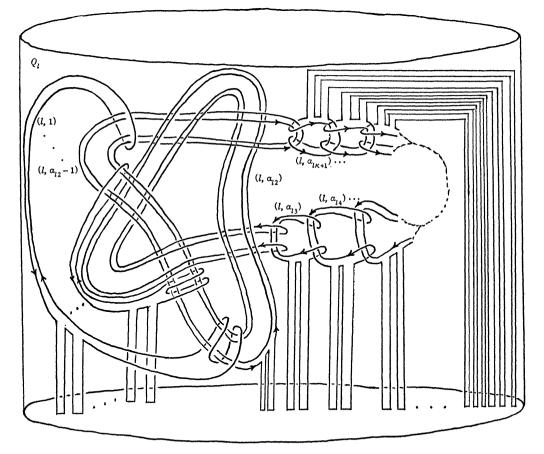


FIGURE 1

Now let $(l_1, \alpha), \ldots, (l_{t(\alpha)}, \alpha)$ be the collection of all those pairs whose second coordinate is α . We assume that $l_1 < \ldots < l_{t(\alpha)}$, set $\mathfrak{K}_{\alpha} = (l_1, \alpha) \ \# \ldots \# (l_{t(\alpha)}, \alpha)$, and $\mathfrak{L} = \mathfrak{K}_1 \cup \ldots \cup \mathfrak{K}_{\mu}$. (R. H. Fox

gives a nice account of the composition operation # in §7 of [1].) The compositions, formed inductively with respect to α , are to be made by running two parallel arcs (each with proper orientation) in the obvious nice way from (l_m, α) to (l_{m+1}, α) , $(m=1, \ldots, t(\alpha)-1)$, and then deleting the appropriate small arcs on ∂Q_{l_m} and $\partial Q_{l_{m+1}}$. Several routine requirements on the placements of these pairs of arcs are also made.

That \mathcal{L} is a $(\mu, \kappa)I$ link follows from the construction and the following properties of L_l in Figure 1:

- 1. For each $j=1,\ldots,\alpha_{l2}-1$, the sublink $(l, j)\cup(l,\alpha_{l2})\cup\ldots\cup(l,\alpha_{l\kappa+1})$ is a $(\kappa+1,\kappa)I$ link. Methods similar to those of [3] prove this.
- 2. Any sublink of L_l which is obtained by removal of one of the components $(l, \alpha_{l2}), \ldots, (l, \alpha_{l}\kappa_{+1})$ is completely splittable.

REFERENCES

- 1. R. H. Fox, A quick trip through knot theory, Topology of 3-manifolds and Related Topics (Proc. Univ. of Georgia Inst., 1961) Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 120-167. MR 25 #3522.
 - 2. W. Whitten, A pair of non-invertible links, Duke Math. J. 36 (1969), 695-698.
- 3. ——, On noninvertible links with invertible proper sublinks, Proc. Amer. Math. Soc. (to appear).

University of Southwestern Louisiana, Lafayette, Louisiana 70501