ON MORSE THEORY AND STATIONARY STATES FOR NONLINEAR WAVE EQUATIONS

BY MELVYN S. BERGER¹

Communicated by J. T. Schwartz, December 1, 1969

The nonlinear equations to be discussed here can be written in the form

(1)
$$\partial^2 u/\partial t^2 = Lu + N(x, u),$$

$$(1') i \, \partial u/\partial t = Lu + N(x, u)$$

where L is a second order elliptic formally selfadjoint differential operator acting on complex-valued functions u(t, x) defined on $\mathbb{R}^1 \times \mathbb{R}^3$, and $N(x, u) = f(x, |u|^2)u$ is a complex-valued function jointly continuous in x and u with f(x, r) = o(1) as $|r| \to \infty$. A complex-valued function u(t, x) is called a stationary state of (1) [or (1')] if

- (a) u(t, x) satisfies (1) [or (1')] on $\mathbb{R}^1 \times \mathbb{R}^3$, and
- (b) $u(t, x) = v(x)e^{t\lambda t}$ where λ is some real number and v(x) is a smooth real-valued function defined on \mathbb{R}^3 , tending to 0 exponentially as $|x| \to \infty$ but not identically zero.

In this article we wish to examine the structure and properties of the stationary states of (1) [or (1')] by combining recent results of Morse theory on Hilbert manifolds with concrete estimates for elliptic differential operators defined on \mathbb{R}^3 .

1. Statement of basic results. We begin with two affirmative facts concerning the existence of stationary states.

THEOREM 1. Let $L=\Delta-p^2$ ($p=\mathrm{const.}$), $f(x, u)=k(|x|)|u|^{\sigma}$ with $0<\sigma<4$ where k(|x|) is a bounded positive continuous function uniformly bounded above zero. Then (1) and (1') have (for each $\lambda^2< p^2$ in (1) and $\lambda < p^2$ in (1')) a countably infinite number of stationary states $v_N(x,\lambda)$, $N=0,1,2,\cdots$. Each $v_N(x,\lambda)$ has precisely N nodal domains in \mathbb{R}^3 and is nonoscillatory outside some fixed sphere of radius R (independent of N).

THEOREM 2. The $v_N(x, \lambda)$ of Theorem 1 (apart from a constant multiplier) are limits (as $m \to \infty$) of spherically symmetric nondegenerate critical points $v_{Nm}(x, \lambda)$ of index N of the functional $\int_{B_m} k(|x|)|u|^{\sigma}u^2$ on an infinite dimensional Hilbert manifold \mathfrak{M}_m where B_m is a ball

AMS Subject Classifications. Primary 5815; Secondary 3560.

Key Words and Phrases. Morse theory, nonlinear wave equations.

¹ Research partially supported by NSF grant 16578.

of radius m in \mathbb{R}^3 centered at the origin. \mathfrak{M}_m is obtained by intersecting real projective space $P^{\infty}(H)$ (obtained by identifying the antipodal points of the sphere

$$\int_{B_m} |\nabla u|^2 + |C_{\lambda}| u^2 = 1, \quad C_{\lambda} = \text{const.},$$

of the Hilbert space $H = \dot{W}_{1,2}(B_m)$ with spherically symmetric functions of the form u(x) = v(r)/r where v(0) = 0 and $v(|x|) \in \dot{W}_{1,2}(B_m)$.

On the other hand, we have the following results concerning the nonexistence of stationary states.

THEOREM 3. Let $Lu = \Delta u - p(x)u$ where $p(x) = p^2 + o(|x|^{-1})$ is a non-negative function continuous outside some bounded domain. Then neither (1) nor (1') possesses stationary states for any $\lambda \ge p^2$ in (1') or $\lambda^2 \ge p^2$ in (1).

THEOREM 4. In addition to the hypotheses of Theorem 3, suppose $f(x, u) = |u|^{\sigma}$. Then if $\sigma \ge 4$, neither (1) nor (1') possesses stationary states for any λ .

2. Sketch of proofs. The results (Theorems 3 and 4) concerning the nonexistence of stationary states follow immediately from Kato [1] and the following "invariant integral" for solutions of

$$\Delta v + \partial F(v)/\partial v = 0$$

defined on \mathbb{R}^3 and vanishing sufficiently rapidly at ∞

$$6\int_{\mathbb{R}^3} F(v)dx = \int_{\mathbb{R}^3} v \frac{\partial F(v)}{\partial v} dx.$$

Theorem 1 follows by noting that the stationary states of (1') can be obtained (after scaling) as the critical points of the functional $\int_{R^3} k(x) |v|^{\sigma} v^2$ on the class of functions

$$U = \left\{ v \left| \int_{R^3} \left| \nabla v \right|^2 + \left| p^2 - \lambda \right| v^2 = 1, v \in \dot{W}_{1,2}(R^3) \right\}.$$

These critical points can, in turn, be approximated by replacing \mathbb{R}^3 by the ball B_m of sufficiently large radius m. (The argument is similar for (1).) In addition we restrict attention to critical points C_m of the form v(x) = w(|x|)/|x| where $w(r) \in \dot{W}_{1,2}(0, m)$. We then apply the Morse theory of critical points of the functional

$$G(w) = \int_0^m k(r) r^{1-\sigma} (w(r))^{\sigma+1} dr$$

on the infinite dimensional projective space \tilde{P}^{∞} defined by identifying antipodal points of the set

$$\left\{w \mid F(w) = \int_0^m \dot{w}^2 + \mid p^2 - \lambda \mid w^2 = 1, w \in \dot{W}_{1,2}(0, m)\right\}.$$

For a suitable sequence $m_n \to \infty$, these critical points are all nondegenerate and the variational problem satisfies the compactness condition: any sequence $w_n \in \tilde{P}^{\infty}$ with $\{ \text{grad } F(w_n) \}$ weakly convergent implies $\{ \text{grad } G(w_n) \}$ is strongly convergent (and hence the Palais-Smale condition C for 1/G(w)). Applying the results of J. Schwartz [2] to this problem, we note G(w) has a sequence of critical points w_{Nm} ($N=0,1,2,\cdots$) of index N such that $G(w_{Nm}) > G(w_{N+1,m})$ for all N. This fact together with the classical oscillation theory for second order ordinary differential equations implies

- (i) w_{Nm} has precisely N nodal domains in B_m , and
- (ii) that the number of these nodal domains does not change when $m \rightarrow \infty$.

An important point in the above arguments (especially in showing that $\lim_{m\to\infty} w_{Nm} = w_N$ is a stationary state) is the following a priori bound for critical points C_m .

LEMMA. For $m \ge M_0$ sufficiently large and for fixed λ , any critical point $v \in C_m$ satisfies

$$|v(x)| \le C(e^{-\beta|x|}/|x|), \quad \text{for } |x| \ge A, \quad \beta^2 = (p^2 - \lambda),$$

where C and A are constants independent of m.

BIBLIOGRAPHY

- 1. T. Kato, Growth properties of solutions of the reduced wave equation with a variable coefficient, Comm. Pure Appl. Math. 12 (1959), 403-425. MR 21 #7349.
- 2. J. Schwartz, A remark on Morse theory, Comm. Pure Appl. Math. 19 (1966), 139-143. MR 34 #827.

Belfer Graduate School of Science, Yeshiva University, New York, New York 10033