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The nonlinear equations to be discussed here can be written in the 
form 

(1) d2u/dt2 « Lu + N(x, «), 

(1') i du/dt = Lu + N(x, u) 

where I is a second order elliptic formally selfadjoint differential 
operator acting on complex-valued functions u(t, x) defined on 
Rl XRZ, and N(x, u) =ƒ(#, | u\ 2)u is a complex-valued function jointly 
continuous in x and u w i t h / ( x , r)=o(l) as |r|—»<*>. A complex-
valued function u(t, x) is called a stationary state of (1) [or (1/)] if 

(a) u(t, x) satisfies (1) [or (1')] on WXR*, and 
(b) u(t} x)=v(x)e{Kt where X is some real number and v(x) is a 

smooth real-valued function defined on JR3, tending to 0 exponentially 
as | x\ —><» but not identically zero. 

In this article we wish to examine the structure and properties of 
the stationary states of (1) [or (1')] by combining recent results of 
Morse theory on Hubert manifolds with concrete estimates for 
elliptic differential operators defined on JR3. 

1. Statement of basic results. We begin with two affirmative facts 
concerning the existence of stationary states. 

THEOREM 1. Let L=A—p2 (£ = const.), f(x, u)=k(\x\ ) | u \ 9 with 
0<<7<4 where k(\x\) is a bounded positive continuous f unction uni-
formly bounded above zero. Then (1) and (1') have (for each \2<p2 in 
(1) and \<p2 in (1')) a countably infinite number of stationary states 
VN(X, X), N = 0, 1, 2, • • • . Each ^ ( x , X) has precisely N nodal domains 
in Rz and is nonoscillatory outside some fixed sphere of radius R 
(independent of N). 

THEOREM 2. The VN(X, X) of Theorem 1 (apart from a constant multi­
plier) are limits (as m—><*>) of spherically symmetric nondegenerate 
critical points VNm(xi X) of index N of the functional fnm k( \ x \ ) | u \ au2 

on an infinite dimensional Hubert manifold 9HX,» where Bm is a ball 
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of radius m in Rz centered at the origin. îftlm is obtained by intersecting 
real projective space P°°(H) (obtained by identifying the antipodal 
points of the sphere 

f | Vu |2 + | Cx | u2 = 1, Cx - const., 
J Bm 

of the Hilbert space H= Wi#(Bm)) with spherically symmetric f unctions 
of the form u(x)=v(r)/r where ?;(0)=0 and v(\x\)ÇzWx,2(Bm). 

On the other hand, we have the following results concerning the 
nonexistence of stationary states. 

THEOREM 3. LetLu=Au—p(x)uwherep(x) =p2+o(\x\-1) is a non-
negative function continuous outside some bounded domain. Then neither 
(1) nor (1') possesses stationary states for any \^p2 in (1') or \2^p2 in 

( i ) . 

THEOREM 4. In addition to the hypotheses of Theorem 3, suppose 
f(xy u) = \u\°. Then if <râ4, neither (1) nor (1') possesses stationary 
states for any X. 

2. Sketch of proofs. The results (Theorems 3 and 4) concerning 
the nonexistence of stationary states follow immediately from Kato 
[ l ] and the following "invariant integral , , for solutions of 

Av + dF(v)/dv = 0 

defined on R* and vanishing sufficiently rapidly at <» 

f C dF(v) 6 I F(v)dx = I v dx. 
J R* J R* ÔV 

Theorem 1 follows by noting that the stationary states of (1') can 
be obtained (after scaling) as the critical points of the functional 
IR* k(x)\v\ 'v2on the class of functions 

U= iv\ ƒ 3 | Vv |2 + | p2 - X | v2 = 1, v E ^ i , 2 ( # 3 ) } . 

These critical points can, in turn, be approximated by replacing JR3 

by the ball Bm of sufficiently large radius m. (The argument is similar 
for (1).) In addition we restrict attention to critical points Cm of the 
form v ( x ) = ^ ( | x | ) / | x | where w{r)Ç:W\^, m). We then apply the 
Morse theory of critical points of the functional 

/» m 

G(w) = I k(r)rx-'(uir)y+idr 
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on the infinite dimensional projective space -P00 defined by identifying 
antipodal points of the set 

<w | F(w) = | w2 + | p2 - X | w2 = 1, w G ^1,2(0, m) 

For a suitable sequence mn—» oo, these critical points are all non-
degenerate and the variational problem satisfies the compactness 
condition: any sequence wnCzP°° with {grad F(wn)} weakly con­
vergent implies {grad G(wn)} is strongly convergent (and hence the 
Palais-Smale condition C for 1/G(w)). Applying the results of J. 
Schwartz [2] to this problem, we note G(w) has a sequence of critical 
points wNm (N = 0,1, 2, • • • ) ofindexiV such that G(wNm)>G(wN+itm) 
for all N. This fact together with the classical oscillation theory for 
second order ordinary differential equations implies 

(i) WNm has precisely N nodal domains in Bmt and 
(ii) tha t the number of these nodal domains does not change when 

m—»oo. 
An important point in the above arguments (especially in showing 

that linwoo WNm = wN is a stationary state) is the following a priori 
bound for critical points Cm. 

LEMMA. For m è M o sufficiently large and for fixed X, any critical 
point vÇiCm satisfies 

| v(x) | ^ C(e-0W/ | * | ) , for | * | £ i l , fi2 - (p2 - X), 

where C and A are constants independent of m. 
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