SMOOTH MAPS TRANSVERSE TO A FOLIATION

BY ANTHONY PHILLIPS

Communicated by Raoul Bott, November 14, 1969

1. Introduction. This article presents a Smale-Hirsch-type classification theorem for smooth maps transverse to a foliation. Let M, W be smooth manifolds, with tangent bundles TM, TW, and let Hom(M, W), Hom(TM, TW) represent the spaces of smooth maps $M \rightarrow W$ and of fibrewise linear maps $TM \rightarrow TW$, where we give to Hom(TM, TW) the compact-open topology, and to Hom(M, W) the C^1 -compact-open topology; thus the map $d:Hom(M, W) \rightarrow Hom(TM, TW)$, which associates to each smooth map its differential, is continuous.

Suppose W carries a foliation \mathfrak{F} , and let $T\mathfrak{F}$ denote the subbundle of TW tangent to \mathfrak{F} (i.e. the embedding $T\mathfrak{F} \rightarrow TW$ is an integrable distribution). Let $Trans(TM, T\mathfrak{F})$ be the subspace of Hom(TM, TW) consisting of those maps fibrewise transverse to $T\mathfrak{F}$, and let

Trans
$$(M, \mathfrak{F}) = d^{-1}$$
 Trans $(TM, T\mathfrak{F}) \subset \text{Hom } (M, W)$.

THEOREM 1. If M is open, then the differential map d: Trans (M, \mathfrak{F}) \rightarrow Trans $(TM, T\mathfrak{F})$ is a weak homotopy equivalence.

Suppose now W has a Riemannian metric, so we can define $N\mathfrak{F}$, the normal bundle to \mathfrak{F} , to be the bundle whose fibre at $x \in W$ is the orthogonal complement to $T\mathfrak{F}_x$. Then the space $\mathrm{Epi}(TM,\ N\mathfrak{F})$ of fibrewise linear and surjective maps $TM \to N\mathfrak{F}$ is a subspace and, in fact, a deformation retract, of $\mathrm{Trans}(TM,\ T\mathfrak{F})$. If we let $p\colon \mathrm{Hom}(TM,\ TW)\to \mathrm{Hom}(TM,\ TW)$ be composition with fibrewise orthogonal projection of TW onto the sub-bundle $N\mathfrak{F}$ then Theorem 1 has the immediate corollary:

THEOREM 2. If M is open, then the map $p \circ d$: Trans $(M, \mathfrak{F}) \rightarrow \text{Epi}(TM, N\mathfrak{F})$ is a weak homotopy equivalence.

REMARKS. Theorem 1, which was proposed to the author by J. W. Milnor, has a special case (where \mathfrak{F} = the foliation by points) the

AMS Subject Classifications. Primary 5736, 5734.

Key Words and Phrases. Foliation, transverse, subbundle, differential map, weak homotopy equivalence, Smale-Hirsch-type classification, covering homotopy property, good position.

author's classification of submersions [6, Theorem A]. This theorem, as well as the rest of the Smale-Hirsch-type theorems for open manifolds, also follows from a general theorem proved by M. L. Gromov in his dissertation [2].

As an application, let us give a short proof of the following result from [7].

THEOREM 3. Let σ be a q-plane field on an open manifold M. If the structural group of σ considered as a q-plane bundle can be reduced to a discrete group, then σ is homotopic to the q-plane field normal to a foliation.

PROOF (see also [2]). Let S be the total space of the bundle σ ; by a theorem of Ehresmann [1], [3], S has a foliation \mathfrak{F} of codimension q of which the zero cross-section is a leaf. Orthogonal projection: $TM \rightarrow \sigma$ can be interpreted as an element H_0 of $\operatorname{Epi}(TM, N\mathfrak{F})$ via the usual identification of σ with the tangent space to the fibres of S along the zero cross-section. Theorem 2 implies that H_0 is homotopic in $\operatorname{Epi}(TM, N\mathfrak{F})$ to $H_1 = p \circ df$, where $f \in \operatorname{Trans}(M, \mathfrak{F})$. If $t \rightarrow H_t$ is the homotopy then $t \rightarrow$ (orthogonal complement of ker H_t) gives a homotopy between σ and the q-plane field normal to the pulled-back foliation $f * \mathfrak{F}$.

Theorem 1 has also been applied to the study of classifying spaces for foliations [4], [5].

2. Outline of proof of Theorem 1. The proof follows the lines of the proof of the submersion theorem of [6]. This method of proof can be summarized as follows. In order to compare the spaces $\operatorname{Trans}(M,\mathfrak{F})$ and $\operatorname{Trans}(TM,T\mathfrak{F})$, we consider the pair of spaces $\operatorname{Trans}(U,\mathfrak{F})$ and $\operatorname{Trans}(TU,T\mathfrak{F})$ for each closed submanifold-with-boundary $U\subset M$, with $\dim U=n=\dim M$. The assignments $U\to\operatorname{Trans}(U,\mathfrak{F})$, $U\to\operatorname{Trans}(TU,T\mathfrak{F})$ can be thought of, following Gromov, as contravariant functors from the category \mathfrak{C}_M of closed n-dimensional submanifolds-with-boundary of M and inclusion maps, to the category \mathfrak{F} of topological spaces.

DEFINITION. A functor $A: \mathbb{C}_M \to \mathfrak{I}$ will be called admissible if it has the following properties.

(a) A is locally defined, in that if $U_1 \cap U_2 \in \mathfrak{C}_M$, and if $X \subset A(U_1) \times A(U_2)$ is defined by $X = \{(f_1, f_2), f_1 | U_1 \cap U_2 = f_2 | U_1 \cap U_2\}$, then the natural map $A(U_1 \cup U_2) \to X$ is a homeomorphism.

¹ If $U \subset M$ is a manifold with boundary, we define $f \in Trans(U, W)$ to mean that f extends to a transverse map of an open neighborhood of U in M, and TU to be $TM \mid U$. These manifolds with boundary may have corners, as described in $[6, \S 0]$.

- (b) If $V \supset U$ is a collarlike neighborhood of U (see [6, p. 176] for a precise definition) then the restriction map $A(V) \rightarrow A(U)$ is a weak homotopy equivalence, and has the covering homotopy property.
- (c) If V = U with a handle of index λ attached, then the restriction map $A(V) \rightarrow A(U)$ has the covering homotopy property. If M is open and n-dimensional then this property need only be satisfied for handles of index $\lambda \leq n-1$.

PROPOSITION (SMALE-THOM-HIRSCH-PALAIS-HAEFLIGER-POENARU THEOREM PROVING MACHINE). Let $A, B: \mathcal{C}_M \to \mathfrak{I}$ be admissible functors, and let $\Phi: A \to B$ be a natural transformation. If $\Phi: A(D^n) \to B(D^n)$ is a weak homotopy equivalence for each embedded n-disc $D^n \subset M$, then so is $\Phi: A(M) \to B(M)$.²

PROOF. See [6, §6].

Theorem 1 will follow from this Proposition once it is shown that, on an open manifold, $\operatorname{Trans}(\ ,\ \mathfrak{F})$ and $\operatorname{Trans}(T\ ,\ T\mathfrak{F})$ are admissible functors, and that $d:\operatorname{Trans}(D^n,\ \mathfrak{F}) \to \operatorname{Trans}(TD^n,\ T\mathfrak{F})$ is a homotopy equivalence. Most of this is a straightforward generalization of the corresponding lemmas for submersions. The only point that seems to require new analysis is showing that $\operatorname{Trans}(\ ,\ \mathfrak{F})$ has property (c). This is treated in the next two sections.

- 3. The covering homotopy property. The proof of this property in the submersion case involves a long, geometric argument [6, §4]; examination of this argument shows that it uses only the following facts about submersions:
 - (a) submersions are stable in the sense of [6, Lemma 3.1];
- (b) submersions form an open and locally defined subspace of Hom(M, W);
- (c) if $f: M \rightarrow W$ is a submersion and h is a diffeomorphism of M, then $f \circ h$ is a submersion.

Facts (b) and (c) are clearly also true of maps transverse to a foliation. (It turns out that facts (b) and (c) alone are sufficient, and that if M is open the appropriate Smale-Hirsch type theorem holds for any subspace of $\operatorname{Hom}(M, W)$ satisfying these two conditions. This observation is due to Gromov [2].) In order to use the "good position" method of proof, it remains to establish an analogue to the stability lemma; the statement is below.

Let $U \subset M$ be a compact manifold-with-boundary, and suppose

² If M is not compact, let A(M) be the inverse limit of $A(U_i)$ where $U_i \subseteq \mathbb{C}_M$ $U_i \subset U_{i+1}$ and $\bigcup U_i = M$.

given $f \in \text{Trans}(U, \mathfrak{F})$. By definition, f extends to a transversal map of an open neighborhood of U. In particular, we may suppose that $f = \overline{f} \mid U$, where $\overline{f} \in \text{Trans}(L, \mathfrak{F})$ and $L \subset M$ is a compact manifold-with-boundary, $U \subset \text{Int } L$. Let E be the total space of $\overline{f} * T\mathfrak{F}$, let $\beta: E \to T\mathfrak{F}, \pi: E \to L$ be the canonical maps, and let \mathfrak{F} be the foliation of E by fibres.

LOCAL FACTORING LEMMA. With data as above, there exist

- (1) an open tubular neighborhood N of the zero cross-section in E (we will consider N as an open manifold with boundary $\partial N = \pi^{-1}\partial L$);
 - (2) a submersion $\phi: N \rightarrow W$ with $d\phi(T_{\mathcal{G}}) \subset T_{\mathcal{F}}$;
 - (3) a neighborhood η of f in Hom(U, W);
- (4) a continuous map $v:\eta \to \operatorname{Aut}(N, \mathfrak{S})$ (the space of foliation-preserving diffeomorphisms of N which are the identity near ∂N) such that $v_f = \operatorname{id}$ and such that $g = \phi \circ v_g \mid U$ for $g \in \eta$.

REMARKS. Roughly speaking, this lemma means that f can be extended to a submersion ϕ of a larger manifold N in such a way that maps nearby to f can be obtained by composing ϕ with leaf-preserving diffeomorphisms of N nearby to the identity, and which are equal to the identity near ∂N . Condition (2) implies that if a map h is transversal to \mathcal{G} , then ϕ o h will be transversal to \mathcal{F} .

This lemma is proved in the next section. Let us now see how it is used to lift an arc of maps from $Trans(U, \mathfrak{F})$ to $Trans(V, \mathfrak{F})$. The technical details involved in lifting a homotopy of a cube of dimension >0 are completely analogous to those for the submersion case. The pictures in $[6, \S 4]$, which illustrate the special case of this argument for \mathfrak{F} the foliation by points, should be consulted.

Lifting an arc. Suppose $F_0 \in \text{Trans}(V, \mathfrak{F})$ and that f_t , $0 \le t \le 1$, is a homotopy of $f_0 = F_0 \mid U$. Each f_t has a neighborhood η_t as described above; clearly, we may suppose that $f([0, 1]) \subset \eta_0$. Let $\phi: N \to W$ be the submersion corresponding to η_0 , and let $\nu: \eta_0 \to \text{Aut}(N\mathfrak{G})$ be as in the local factoring lemma.

We define a collar neighborhood C of U in V to be a neighborhood diffeomorphic to $U \cup \dot{U} \times [0, 1]$, where $\dot{U} \cong S^{\lambda-1} \times D^{n-\lambda}$ is the attaching surface of the handle. Let \dot{C} be the boundary of C in V (see [6, Figure 4.5].)

We say that F_0 is in good position with respect to ϕ if we can find a collar neighborhood C of U in V and an embedding $\beta: C \rightarrow N$ such that

- (1) $\beta \mid U$ is the zero cross-section;
- (2) $\phi \circ \beta = F_0 \mid C$;
- (3) $\beta(\dot{C}) \subset \partial N$;
- (4) β is transverse to G.

If F_0 is in good position with respect to ϕ , then the arc f_i can be lifted to Trans (V, \mathcal{F}) by defining

$$F_t(x) = F_0(x),$$
 $x \in V - C,$
= $\phi \circ \nu_t \circ \beta(x),$ $x \in C.$

Otherwise we remark that F_0 is in good position with respect to $\phi \mid S$, where $S \subset N$ is some smaller tubular neighborhood. This follows from comparing the maps $F_0 \mid L \cap V$ and $\phi \mid L \cap V$ (where $L \subset N$ as the zero cross-section). These maps agree on U, so they are close near U, so since ϕ is a submersion there exists, by [6, Lemma 3.1], an embedding $\kappa \colon \hat{U} \to N$, where $\hat{U} \subset L \cap V$, $\hat{U} \cong U \cup \hat{U} \times [0, 1]$ is a collar neighborhood of U in V, such that $\phi \circ \kappa = F_0 \mid \hat{U}$, and $\kappa \mid U$ is the zero cross-section. If \hat{U} is chosen small enough κ will be transverse to G. Then pick L' such that $U \subset \text{Int } L'$ and $\pi \circ \kappa(\hat{U}) \cap \partial L' = \pi \circ \kappa(\hat{U} \times \{\frac{1}{2}\})$. Let $S = \pi^{-1}L' \cap N$. Then taking $C = U \cup \hat{U} \times [0, \frac{1}{2}]$ and $\kappa \mid C \colon C \to S$ shows that F_0 is in good position with respect to $\phi \mid S$.

Now pick an $\epsilon > 0$ such that $\nu_t(U) \subset S$ for $t \leq \epsilon$ and such that the arc of embeddings $\nu_t \mid U : U \to S$ can be realized by composing the zero cross-section with an arc σ_t in Aut (S, \mathfrak{g}) . Then the argument above shows how to lift $f([0, \epsilon])$ to an arc $\hat{F}: [0, \epsilon] \to \operatorname{Trans}(V, \mathfrak{F})$ starting at F_0 .

In order to continue past ϵ we change \hat{F} to a new lifting \tilde{F} such that \tilde{F}_{ϵ} is in good position with respect to ϕ o ν_{ϵ} . Briefly, this is done by a g-transverse isotopy of $\kappa \mid \dot{U} \times \left[\frac{1}{2}, 1\right]$, keeping ends fixed, in a larger tubular neighborhood \hat{N} . The isotopy described in [6, Sublemma 4.6] may be performed on π o κ and lifted under π , starting at κ , to give the desired arc of maps.

4. Proof of local factoring lemma.

PROOF. (With notation from §3). Pick a connection in TW such that if $v \in T\mathfrak{F}$, the arc $t \to \exp(tv)$ lies in a leaf, and define $\phi: E \to W$ by

$$\phi(v) = \exp_{\tilde{f}(\pi(v))} \beta(v).$$

It follows from transversality of \bar{f} that this ϕ is a submersion along L (which we identify with the zero cross-section in E) and therefore on some tubular neighborhood N of L in E, e.g. $\{|v| < \epsilon\}$ for some $\epsilon > 0$. This is essentially a "foliated tubular neighborhood," as described in [8, Proposition 3.1]. Observe that by the choice of connection, $d\phi(T\mathfrak{P}) \subset T\mathfrak{F}$, as required.

Suppose $g \in \text{Hom}(U, W)$ is C^1 -close to f. Then since ϕ is a submersion there is an embedding $\mu_g \colon U \to N$ such that $\phi \circ \mu_g = g$; in fact the argument of [6, Lemma 3.1] gives a continuous map $\mu \colon \eta$

 \rightarrow Emb(U, N) (where η is a neighborhood of f in Hom(U, W) and Emb(U, N) is the space of embeddings) such that μ_f = the zero cross-section and ϕ o $\mu_g = g$ for $g \in \eta$. If g is close enough to f, μ_g will also be transverse to the fibres of G, and will extend to an embedding: $L \rightarrow N$ transverse to the fibres and equal to the zero cross-section near ∂L . This embedding in turn will extend to a fibre-preserving diffeomorphism ν_g of N, which leaves a neighborhood of $\partial N = \pi^{-1}\partial L$ fixed; it is easy to check that these extensions can be defined so as to depend continuously on g.

REFERENCES

- 1. C. Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable, Colloque de Topologie (Bruxelles, 1950), Georges Thone, Liège et Masson, Paris, 1951, pp. 29-55. MR 13, 159.
- 2. M. L. Gromov, Stable mappings of foliations into manifolds, Izv. Akad. Nauk SSSR 33 (1969), 707-734. (Russian)
- 3. A. Haefliger, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa (3) 16 (1962), 367-397. MR 32 # 6487.
 - 4. ——, Feuilletages sur les variétés ouvertes (to appear).
 - 5. J. Milnor, Foliations and foliated vector bundles, (MIT Mimeographed notes).
- 6. A. Phillips, Submersions of open manifolds, Topology 6 (1967), 171-206. MR 34 #8420.
- 7. ——, Foliations on open manifolds. II, Comment. Math. Helv. 44 (1969), 367-370.
 - 8. J. Wood, Foliations on 3-manifolds, Ann. of Math. (2) 89 (1969), 336-358.

STATE UNIVERSITY OF NEW YORK, STONY BROOK, NEW YORK 11790