PRODUCT FORMULAS FOR $L_{n}(\pi)$

BY JULIUS L. SHANESON

Communicated by William Browder, December 12, 1969

Introduction. In this note we prove some product formulas for non-simply-connected even dimensional surgery obstructions. This complements [8] (and in fact uses [8] as well as [5]). We also give a simple example of the type of geometric construction that product formulas make possible.

1. Product formulas. Let Ω_{m} be the oriented cobordism classes of oriented, closed, smooth or piecewise-linear (P.L.) manifolds of dimension m. Let π be a finitely presented group, let $w: \pi \rightarrow Z_{2}$ be a homomorphism, and let $L_{n}^{h}(\pi, w)$ be the Wall surgery obstruction group for the homotopy problem in dimension $n \geqq 5$ (see [6] or [7]). That is, if $\left(X^{n}, \partial X\right)$ is a manifold, if ξ is a vector bundle over X, if $f:(M, \partial M) \rightarrow(X, \partial X)$ is a map of degree one whose restriction induces a homotopy equivalence of boundaries, and if F is a stable framing of $\tau(M) \oplus f^{*} \xi$; then if $\left(\pi_{1} X, w^{1} X\right)=(\pi, w)$, there is an obstruction $\theta(M, f, F)$ in $L_{n}^{n}(\pi, w)$ that vanishes if and only if (M, f, F) is cobordant relative the boundary to (N, g, G), g a homotopy equivalence. The Wall groups satisfy $L_{n}^{h}(\pi, w)=L_{n+4}^{h}(\pi, w)$, and surgery obstructions are invariant under products with complex projective space CP^{2}. For $n \geqq 6$, every element can be realized as $\theta(M, f, F)$ for a suitable given X and ξ; e.g. $X=K \times I$ and $\xi=\nu(X)$, the normal bundle of X. For low dimensions, obstructions are defined by crossing with CP^{2}; their vanishing is a necessary condition for the surgery problem to be solvable.

There is a pairing

$$
\Omega_{m} \times L_{n}^{h}(\pi, w) \rightarrow L_{n+m}^{h}(\pi, w)
$$

defined as follows: Let $\alpha \in \Omega_{m}$ and let $z \in L_{n}^{h}(\pi, w)$. Assume $n \geqq 6$. Choose a simply-connected manifold P representing α, and let X, ξ, M, f, and F be as above so that $\theta(M, f, F)=z$. Let G be the natural framing of $\tau(P) \oplus \nu(P), \nu(P)$ a high dimensional normal bundle of P. Then we make the definition

$$
\alpha \times z=\theta(P \times M, 1 \times f, G \times F)
$$

[^0]This is a well defined bilinear pairing; see §9 of [7].
A similar pairing exists for the obstruction groups $L_{n}^{s}(\pi, w)$ for the simple homotopy problem.

Let $I: \Omega_{m} \rightarrow \boldsymbol{Z}$ be the index homomorphism; i.e. $I(\alpha)=0$ if $m \neq 0$ $(\bmod 4)$ and $I(\alpha)=$ Index P for any $P \in \alpha$ if $m=0(\bmod 4)$, in which case the index of P is the index of the quadratic form $(x \cup y)[P]$ on $H^{m / 2}(P ; Q)$. Williamson [8] has shown that for n odd and m even,

$$
\alpha \times z=I(\alpha) z, \quad \alpha \in \Omega_{m}, \quad z \in L_{n}^{s}(\pi, w) .
$$

Theorem 1.1. Let m and n be even. Let $\alpha \in \Omega_{m}, z \in L_{n}^{h}(\pi, w)$. Then $\alpha \times z=I(\alpha) z$.

Proof. Let P be a simply-connected representative of α. Assume $n \geqq 6$. Let $\theta(M, f, F)=z$, where $f:\left(M, \partial_{-} M, \partial_{+} M\right)$ $\rightarrow(K \times I, K \times 0, K \times 1)$ with $f \mid \partial_{-} M: \partial_{-} M \rightarrow K \times 0$ a diffeomorphism (or P.L. equivalence), and with F a stable framing of $\tau(M)$ $\oplus f^{*} \nu(K \times I)$. Let

$$
j(K): L_{n}^{h}(\pi, w) \rightarrow L_{n+1}^{s}\left(\pi \times Z, w_{1}\right)
$$

be the map defined in $\S 5$ of [5]. It is clear from the definition that

$$
\begin{equation*}
P \times j(K) z=j(P \times K)(\alpha \times z) . \tag{*}
\end{equation*}
$$

The formula of Williamson, applied to the left side of (*), gives zero if $m \equiv 2(\bmod 4)$. Hence $\alpha \times z=0$ also, since $j(P \times K)$ is monic by Theorem 5.1 of [5].

Suppose $m \equiv 0(\bmod 4)$. It follows from $\S 9$ of $[8]$ that $j(K)$ depends only upon how we identify $\pi_{1} K$ with π; i.e. only upon the choice of a $\operatorname{map} K \rightarrow K(\pi, 1)$ that induces an isomorphism of fundamental groups. (This observation clears up a question raised in some remarks in §5 of [5]. In the present situation we could avoid this observation by making an extra geometric construction.) Hence, the formula of Williamson implies that the left side of (*) is $j(P \times K) I(\alpha) z$ $=j\left(\mathrm{CP}^{2} \times K\right) I(\alpha) z$. So by 5.1 of [5] again, $\alpha \times z=I(\alpha) z$, which completes the proof.

Let $A_{j}(\pi, w), j \geqq 0$, be the subquotient of the Whitehead group defined in §4 of [5].

Corollary 1.2. Suppose $A_{n+1}(\pi, w)=0, n$ even. Let $\alpha \in \Omega_{m}, z$ $\in L_{n}^{s}(\pi, v), m$ even. Then $\alpha \times z=I(\alpha) z$.

Proof. By Proposition 4.1 of [5], the natural map of $L_{n}^{s}(\pi, w)$ to $L_{n}^{h}(\pi, w)$ is a monomorphism.

Corollary 1.3. For m and n even, $\alpha \in \Omega_{m}, z \in L_{n}^{s}(\pi, w), \alpha \times z-I(\alpha) z$ always has order two.

Proof. Every element of $A_{n+1}(\pi, w)$ has order two, for any π. By 1.1 and 4.1 of [5], $\alpha \times z-I(\alpha) z$ is in the image of the natural map $A_{n+1}(\pi, w) \rightarrow L_{n}^{s}(\pi, w)$.

Remarks. (1) For π any finite Abelian group and w trivial, $A_{n+1}(\pi, w)=0$ if n is even.
(2) For $\pi=Z_{n}$ and w trivial, one can prove 1.2 using the idea of [4] to study the Wall groups via the Atiyah-Singer index theorem.
(3) Using Proposition 4.6 of [5] and the product formulas for Whitehead torsion, it is not hard to see that for $m \equiv 0(\bmod 4)$ we have a commutative diagram with exact rows:

$$
\begin{array}{ccc}
A_{n+1}(\pi, w) & \rightarrow L_{n}^{s}(\pi, w) & \rightarrow L_{n}^{h}(\pi, w) \\
\downarrow \lambda & \downarrow \beta & \downarrow \xi \\
A_{n+1}(\pi, w) \rightarrow & \rightarrow L_{n}^{s}(\pi, w) & \rightarrow L_{n}^{h}(\pi, w)
\end{array}
$$

where $\xi(z)=I(\alpha) z, \lambda(z)=I(\alpha) z$, and $\beta(z)=\alpha \times z$. The rows are part of Rothenberg's sequence (Proposition 4.1 of [5]). Thus to show that the congruence of 1.3 is an exact equality, it remains to solve an extension problem. A similar remark holds for $m \equiv 2(\bmod 4)$.
2. An application to nonlinear representations. Theorem 1.1 and its corollaries can be used to construct various exotic manifolds, group actions, etc. For example, see [1] for some applications of the (previously well-known) simply-connected case. In this section we give one simple example of how to create a nonlinear representation by killing a surgery obstruction using 1.1.

Let G and H be compact Lie groups and let ρ be a smooth action of $G \times H$ on a closed manifold M, with isotropy subgroups G, H, and $\{e\}$. Then the fixed point set of $G, F(G)$, is invariant under H, and so we get an action $\alpha(\rho)$ on $F(G)$ by H. Similarly we have an action $\beta(\rho)$ on $F(H)$ by G.

Let $\boldsymbol{\lambda}$ be a free action of G on a homotopy sphere $\Sigma^{2 k-1}$. We say $\boldsymbol{\lambda}$ is normally linear if there is a free linear (orthogonal) action μ on $S^{2 k-1}$ and a homotopy equivalence $h: S^{2 k-1} / \lambda \rightarrow S^{2 k-1} / \mu$ with vanishing normal invariant in $\left[S^{2 k-1} / \mu ; G / O\right]$. Let G_{0} be the component of the identity of G and let $\pi=G / G_{0}$. Suppose $\pi \neq\{e\}$ and k is even or the smallest prime dividing $|\pi|$ is not two. Suppose $\operatorname{dim} G$ is even and $(2 k-\operatorname{dim} G) \geqq 6$. Then, if a free linear action μ exists, it follows from
results of Petrie [4] that there are infinitely many normally linear actions on the standard sphere that are P.L. (and even topologically) distinct.

Theorem 2.1. Let G be a compact, even dimensional Lie group, and let λ be a free normally linear action of G on a homotopy sphere $\Sigma^{2 k-1}, k \geqq 2$. Let H_{1} be either the group of unit complex numbers or unit quaternions, and let δ be the (usual) free linear representation of H_{1} on $S^{4 \epsilon m-1}, m \geqq 1, \epsilon=1$ or 2 depending on whether $\operatorname{dim} H_{1}=1$ or 3 . Assume $4 \epsilon m+2 k-\operatorname{dim} G-3 \geqq 5$. Let H be any closed subgroup of H_{1}. Then \exists a fixed point free action ρ of $G \times H$ on a homotopy sphere $M^{2 k+4 e m-1}$ with isotropy subgroups G, H, and $\{0\}$, so that $\alpha(\rho)=\delta \mid H$ and $\beta(\rho)=\lambda$.

Proof. Let $f: \Sigma^{2 k-1} / \lambda \rightarrow S^{2 k-1} / \mu=K, \mu$ a free orthogonal action of G, be a homotopy equivalence with vanishing normal invariant. Then there is a cobordism W with $\partial_{+} W=S^{2 k-1} / \lambda$, a map $\phi:\left(W, \partial_{-} W, \partial_{+} W\right)$ $\rightarrow(K \times I, K \times 0, K \times 1)$ of degree 1 with $\phi \mid \partial_{+} W=f$ and $\phi \mid \partial_{-} W$ a diffeomorphism, and a stable framing F of $\tau(W) \oplus \phi^{*} \nu(K \times I)$. Let $z=\theta(W, \phi, F) \in L_{n}(\pi), \pi=G / G_{0}, G_{0}$ the component of the identity element of $G, n=2 k-1-\operatorname{dim} G$. (We omit w from the notation since it is trivial here.)

The quotient $Q=S^{4 \epsilon m-1} / \delta$ is either the complex projective space $\mathrm{CP}^{2 m-1}$ or the quaternionic projective space $\mathrm{HP}^{2 m-1}$. Both have index zero. Hence $[Q] \times z=0$. It follows (using the periodicity of surgery obstructions for $n \leqq 4$) that there is an h-cobordism U of $K \times Q=\partial_{-} U$ to $\left(\Sigma^{2 k-1} / \lambda\right) \times Q=\partial_{+} U$ and a map $g: U \rightarrow K \times I \times Q$ so that the restriction $g \mid \partial_{-} U: \partial_{-} U \rightarrow K \times 0 \times Q$ is the identity and $g \mid \partial_{+} U: \partial_{+} U$ $\rightarrow K \times 1 \times Q$ is $f \times 1$.

Now $K \times I \times Q$ is the base space of a principal $G \times H_{1}$-bundle with total space $S^{2 k-1} \times S^{4 e m-1} \times I$; the action is just $(\mu \times \delta) \times I$. Let V be the total space of the bundle induced over U via g from this bundle. Then V is an h-cobordism from $S^{2 k-1} \times S^{4 e m-1}$ to $\Sigma^{2 k-1} \times S^{4 e m-1}$ and carries a free $G \times H_{1}$ action, ξ.

Let

$$
M=D^{2 k} \times S^{4 e m-1} \cup V \cup \Sigma^{2 k-1} \times D^{4 e m}
$$

i.e. take the disjoint union and identify $\partial_{-} V$ with $\partial\left(D^{2 k} \times S^{4 \epsilon m-1}\right)$ and $\partial_{+} V$ with $\partial\left(\Sigma^{2 k-1} \times D^{4 \epsilon m}\right)$. Since μ and δ are orthogonal they extend to actions $\bar{\mu}$ and $\bar{\delta}$ on $D^{2 k}$ and $D^{4 e m}$, respectively, fixed point free except at the origin. The union $\rho=(\bar{\mu} \times \delta) \cup \xi \cup(\lambda \times \bar{\delta})$ is an action of $G \times H_{1}$ on M. It is easy to verify that M is a homotopy sphere and that $\rho \mid G \times H$ has the desired properties.

Note. For the special case of $\boldsymbol{Z}_{p} \times \boldsymbol{Z}_{q}$, we can make $\alpha(\rho)$ and $\beta(\rho)$ arbitrary normally linear actions of \boldsymbol{Z}_{q} on $S^{4 m-1}$ and \boldsymbol{Z}_{p} on $S^{4 k-1}$, respectively. The argument is similar.

References

1. W. Browder, Surgery and the theory of differentiable transformation groups, Proc. Conf. Transformation Groups, Tulane Univ., New Orleans, La., 1967.
2. -_, Surgery on simply-connected manifolds (to appear).
3. K. W. Kwun and R. H. Szczarba, Product and sum theorems for Whitehead torsion, Ann. of Math. (2) 82 (1968), 183-190. MR 32 \#454.
4. T. Petrie, The Atiyah-Singer invariant, the Wall groups $L_{n}(\pi, 1)$, and the function $t e^{x}+1 / t e^{x}-1$, Ann. of Math. (to appear).
5. J. L. Shaneson, Wall's surgery obstruction groups for $Z \times G$, Ann. of Math. (2) 90 (1969), 296-334.
6. C. T. C. Wall, Surgery of non-simply-connected manifolds, Ann. of Math. (2) 84 (1966), 217-276. MR 35 \#3692.
7. -- Surgery of compact manifolds, Academic Press (to appear).
8. R. E. Williamson, Surgery in $M \times N$ with $\pi_{1} M \neq 1$, Bull. Amer. Math. Soc. 75 (1969), 582-585.

Princeton University, Princeton, New Jersey 08540

[^0]: AMS Subject Classifications. Primary 5705, 5710; Secondary 5747.
 Key Words and Phrases. Surgery, surgery obstruction, index, Whitehead torsion, nonlinear representation.

