GENERALIZED THOM SPECTRA AND TRANSVERSALITY FOR SPHERICAL FIBRATIONS¹

BY NORMAN LEVITT

Communicated by W. Browder, February 27, 1970

1. A Poincaré duality space (abbreviated P.D. space) of dimension $n \ge 0$ is a finite complex M with the following property.

Let M be embedded in S^{n+k} , k large, and let R be a regular neighborhood; then the inclusion $\partial R \subseteq R$, when converted to a fibration, has fiber a (k-1)-sphere.

Similarly a Poincaré cobordism $(W; M_0, M_1)$ of dimension n+1 is a triad with the following property.

Let W; M_0 , M_1 be embedded in $S^{n+k} \times \{I; \{0\}, \{1\}\}$ with relative regular neighborhood R (i.e. $R \cap S^{n+k} \times \{i\} = Q_i$ is a regular neighborhood of M_i in $S^{n+k} \times \{i\}$, i = 0, 1). Let $\overline{\partial} R = \text{closure } \partial R - S^{n+k} \times \{0, 1\}$. Then $\overline{\partial} R \subseteq R$ is a (k-1)-spherical fibration and $\overline{\partial} R \cap Q_i = \partial Q_i \subseteq Q_i$ is the induced (k-1)-spherical fibration.

A P.D. pair M, ∂M is a P.D. cobordism M; ∂M , \emptyset . If W; M_0 , M_1 is a P.D. cobordism then M_0 , M_1 are P.D. spaces of one lower dimension. For a P.D. space M let $\nu_k(M)$ be the fibration corresponding to $\partial R \subseteq R$; for a P.D. cobordism W; M_0 , M_1 let $\nu_k(W; M_0, M_1)$ be the fibration corresponding to $\overline{\partial} R \subseteq R$.

A Generalized Thom Spectrum is a spectrum defined as follows: let $\xi_k: E_k \to B_k$ be a sequence of (k-1)-spherical fibrations, $k \ge 1$. Let $\psi_k: B_k \to B_{k+1}$ be maps covered by spherical-fibration maps $\phi_k: \xi_k \oplus \epsilon \to \xi_{k+1}$.

Let the Thom complex $T(\xi^{*i})$ be the space $\mathfrak{M}_{\xi_k} \cup cE_k$, i.e. the mapping cylinder of $\xi_k : E_k \to B_k$ union the cone on E_k with the top of the mapping cylinder identified with the base of the cone. There are natural maps $\sum T(\xi_k) \to T(\xi_{k+1})$. This forms the generalized Thom spectrum T.

Let S be the spectrum got by taking $B_k = B_{k+1} \cdot \cdot \cdot = \text{point}$; thus S is the sphere spectrum. If T is any spectrum as above, we assume that there are base points in each B_k , preserved by ψ . This gives an inclusion of spectra $S \subseteq T$.

A T-P.D. space (or simply T-space) is a P.D. space M together with maps of spherical fibrations $f_k:\nu_k(M)\to\xi_k$ so that

AMS Subject Classifications. Primary 5568, 5710; Secondary 5550, 5730.

Key Words and Phrases. Thom complexes of spherical fibrations, Poincaré duality spaces, obstructions to transversality, Poincaré duality cobordism, surgery, Arf invariant, index, Top/PL, Pontrjagin-Thom construction.

¹ Partially supported by a Ford Foundation Grant.

$$\begin{array}{ccc}
\nu_k \oplus \epsilon & \xrightarrow{\cong} \nu_{k+1} \\
\downarrow f_k \oplus 1 & \downarrow f_{k+1} \\
\xi_k \oplus 1 & \xrightarrow{\phi_k} \xi_{k+1}
\end{array}$$

commutes (k large). We denote such an object by (M, f).

Similarly, a T-cobordism is a P.D. cobordism W; M_0 , M_1 together with maps $g_k: \nu(W; M_0, M_1) \rightarrow \xi_k$. Two T-spaces (M_0, f^0) , (M_1, f^1) are said to be T-cobordant iff there is a T-cobordism W; M_0 , M_1 ; g so that $f_k = g_k$ o i_k^j , where i_k^j is the natural map $\nu_k(M_j) \subseteq \nu_k(W; M_0, M_1)$, j = 0, 1.

T-cobordism is an equivalence relation, and the operation of taking disjoint union defines a group on equivalence classes, so that we get a graded group Ω_*^T (graded by dimension). Of course, if we were dealing with PL or orthogonal bundles we would have the formula $\Omega_*^T = \pi_* T$, where π_* denotes stable homotopy of the spectrum. However, it is well known that this is not the case for generalized Thom spectra. In particular, if T arises from $\xi_k =$ universal orientable spherical fibration, i.e. $B_k = \mathrm{BSG}(k)$, then it is known that $\pi_* T$ is finite whereas Ω_{4t}^T is of infinite order because there is a well-defined nontrivial homomorphism (the index) to the integers.

Our purpose then is to study the relationship between Ω_*^T and π_*T . In this paper, we state some important results. A full exposition will appear later.

2. The Pontrjagin-Thom construction yields a homomorphism $p:\Omega_*^T \to \pi_*T$. We will attempt to elucidate some properties of p. We restrict our attention to the case where ξ_k is oriented and ϕ_k respects orientation.

We will first need to analyze a certain graded group Q_* , which is defined as the kernel of $p:\Omega_*^{\mathcal{S}} \to \pi_* S$. It is easily seen that there are short exact sequences

$$0 \to Q_i \to \Omega_i^s \xrightarrow{p} \pi_i S \to 0.$$

(The fact that p is onto follows immediately from the fact that the isomorphism between ordinary framed cobordism of manifolds and π_*S factors through Ω^s_* .)

LEMMA 1. For $i \ge 5$, $Q_i = \pi_i$ G/Top. Recall π_i G/Top = 0, i odd; Z, i = 0 (4); Z_2 , i = 2 (4).

This is really a paraphrase of the fact that two elements in Q_i , $i \ge 5$, are equal if and only if they have the same index-Arf invariant.

Recent work of F. Quinn suggests that this is true for i=3, 4 as well. We conjecture that this is true, in fact, for all i. (For the definition of the Arf invariant on Ω_{4i+2}^{S} , see [1].)

3. Now let N be a compact PL manifold of dimension r, and let $\xi: E \to B$ be a (k-1)-spherical fibration $T(\xi) = \mathfrak{M}_{\xi} \cup cE$. Let $f: N \to T(\xi)$. Set $R = f^{-1}(\mathfrak{M}_{\xi})$, $Q = f^{-1}(cE)$, $D = f^{-1}(E)$, $(E = \mathfrak{M}_{\xi} \cap cE)$ so that $D = R \cap Q$. We say that f is transverse regular iff R, Q are codimension 0 submanifolds of N, $\partial R = \partial Q = D$ and

$$\begin{array}{ccc} D \longrightarrow E \\ \big| \subseteq & \big| \subseteq \\ R \longrightarrow \mathfrak{M}_{\xi} \end{array}$$

is, up to homotopy, a map of (k-1)-spherical fibrations. Thus, R is a P.D. space of dimension r-k. A similar definition can be made if N is a manifold with boundary.

THEOREM 1. Let N, ξ be as above, with $k \ge 6$, $r \le 3k-3$, or with $k \ge 3$, $r \le 2k-1$. Let $f: N \to T(\xi)$ be a continuous map. Then there are obstructions to deforming f to a transverse regular map which lie in $H^i(N, Q_{i-k-1})$.

Actually, for a suitable definition of transverse regularity, Theorem 1 holds true for N an arbitrary complex.

Theorem 1 can be elucidated by considering the following construction:

First, $T(\xi) - *$ is an open set \mathfrak{A} of $T(\xi)$. (Here, * is the cone point of cE.) We may assume that there is a contractible open set $\mathfrak{O} \subseteq \mathfrak{A}$; $\mathfrak{M}_{\xi|\mathfrak{O}} \subseteq \mathfrak{M}_{\xi}$, and $\mathfrak{M}_{\xi|\mathfrak{O}} \cup (cE-E)$ is an open set \mathfrak{A} of $T(\xi)$. $\{\mathfrak{A},\mathfrak{A}\}$ is an open cover of $T(\xi)$. Let $\bar{\omega}(\xi)$ be the semisimplicial complex whose j-simplices are maps $\sigma: \Delta^{j} \to T(\xi)$ where $\sigma(\Delta^{j}) \subseteq \mathfrak{A}$ or $\sigma(\Delta^{j}) \subseteq \mathfrak{A}$ and where σ is transverse regular on Δ^{j} and all its faces. There is a natural map $\bar{\omega}(\xi) \to T(\xi)$. The obstructions of Theorem 1 measure the possibility that a map to $T(\xi)$ may be deformed so that it can be lifted to $\bar{\omega}(\xi)$. If T is a Generalized Thom Spectrum defined by ξ_k , $k=1,2,\cdots$ then we can make $\{\bar{\omega}(\xi_k)\}$ into a spectrum $\overline{\mathfrak{W}}(T)$ so that the maps $\bar{\omega}(\xi_k) \to T(\xi_k)$ define a map of spectra $\overline{\mathfrak{W}}(T) \to T$.

We can define a semisimplicial complex $\omega(\xi)$ similar to $\bar{\omega}(\xi)$ by simply ignoring the condition that image $\sigma \subseteq \alpha$ or α , and requiring only that σ be transverse regular on α^j and all its faces. Thus $\bar{\omega}(\xi) \subseteq \omega(\xi)$. Similarly, given a Generalized Thom Spectrum, the complexes $\alpha(\xi)$ form a spectrum $\alpha(T)$. It turns out that $\alpha_* \alpha(T) = \alpha_*^T$, and that the natural map $\alpha(T) \to T$ is a representative, on the level of spectra,

of the Pontrjagin-Thom map.

THEOREM 2. There is an exact sequence

$$\cdots \to Q_i \to \pi_i \overline{\mathfrak{W}}(T) \to \pi_i(T) \to Q_{i-1} \to \cdots$$

This follows from Theorem 1.

We conjecture that $\overline{\mathbb{W}}(T) \subseteq \mathbb{W}(T)$ is a homotopy equivalence. This would allow the substitution of Ω_i^T for $\pi_i \overline{\mathbb{W}}(T)$ in the exact sequence above.

4. Consider a Generalized Thom Spectrum T. If (M, f) is a T-space and if $g: M' \to M$ is a degree-one map covered by $\psi_k: \nu_k(M') \to \nu_k(M)$, large k, then setting $f'_k = f_k \circ \psi_k$ defines another T-space (M', f'). We say that (M', f') is related to (M', f'). Consider the equivalence relation \cong generated by this relation; dividing by \cong defines a quotient group T^T_* of Ω^T_* , and it is easy to see that $p: \Omega^T_* \to \pi_* T$ factors through $p_0: T^T_* \to \pi_* T$.

THEOREM 3. p_0 is a monomorphism; in fact, for $i \ge 6$, $\ne 4k+3$, p_0 is an isomorphism; for $i \ge 7$, = 4k+3, coker p_0 is at most Z_2 .

Theorem 3 follows from Theorem 1 and some of the techniques of Theorem 2. We outline the proof: To show p_0 is monic, we first show that if M, f represents an element in the kernel of $p_0: T_i^T \to \pi_i T$ then there is an M^1 , f^1 related to M, f so that $[M^1, f^1] \in \Omega_i^T$ is in the image of $\pi_i \overline{W}(T) \to \pi_i W(T) = \Omega_i^T$. One then shows by means of the exact sequence that M^1 , f^1 is T cobordant to M^2 , f^2 so that M^2 , f^2 is actually a G-framed P.D., space, i.e. M^2 , f^2 is an S-space, and represents an element in Q_i . It is easy to show then that there is a T-space (in fact, an S-space) M^3 , f^3 related to M^2 , f^2 , and M^3 , f^3 is T-cobordant (in fact, S-cobordant) to zero. Thus M, f represents zero in T_i^T , and p_0 is monic.

To show the rest of Theorem 3, we merely use the computation of Q_* of Lemma 1.

5. Some conjectures are suggested by the above. First, let O^i denote ith loop space (instead of the customary notation Ω^i). Then given the spectrum T, $\mathfrak{W}(T)$, we get spaces $A(T) = \lim_{t \to \infty} O^t T(\xi_i)$, $B(T) = \lim_{t \to \infty} O^i \omega(\xi_i)$ so that $\pi_* A(T) = \pi_* T$, $\pi_* B(T) = \pi_* \mathfrak{W}(T) = \Omega^T_*$. The map of spectra $\mathfrak{W}(T) \to T$ becomes a map $B(T) \to A(T)$; and if we have a map of Generalized Thom Spectra $T \to U$ we get a homotopy commutative square

$$\begin{array}{ccc} B(T) \to B(U) \\ \downarrow & \downarrow \\ A(T) \to A(U). \end{array}$$

Let $C(T) = \text{fiber } B(T) \rightarrow A(T)$. Then we conjecture that C(T) = G/Top and

$$G/\text{Top} = G/\text{Top}$$

$$\downarrow \qquad \qquad \downarrow$$

$$B(T) \rightarrow B(U)$$

$$\downarrow \qquad \qquad \downarrow$$

$$A(T) \rightarrow A(U)$$

is a map of fibrations. If we abandon the condition that T be defined by *orientable* fibrations S_k , we then conjecture that C(T) is a space whose homotopy realizes the L-groups of some appropriate group (see [3], [4]).

BIBLIOGRAPHY

- 1. W. Browder, The Kervaire invariant of framed manifolds and its generalization. Ann. of Math. (2) 90 (1969), 157-186.
 - 2. ——, Surgery on simply connected manifolds (to appear).
 - 3. F. Quinn, Thesis, Princeton University, Princeton, N. J., 1969.
- 4. C. T. C. Wall, Surgery on non-simply-connected manifolds, Ann. of Math. (2) 84 (1966), 217-276. MR 35 #3692.

COURANT INSTITUTE OF MATHEMATICAL SCIENCES NEW YORK UNIVERSITY, NEW YORK, NEW YORK 10012

RUTGERS UNIVERSITY—THE STATE UNIVERSITY OF NEW JERSEY, NEW BRUNSWICK, NEW JERSEY 08903