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1. A Poincaré duality space (abbreviated P.D. space) of dimension
7= 0 is a finite complex M with the following property.

Let M be embedded in S*t*, k large, and let R be a regular neighbor-
hood; then the inclusion dIRC R, when converted to a fibration, has
fiber a (k—1)-sphere.

Similarly a Poincaré cobordism (W; M,, M;) of dimension n-+1
is a triad with the following property.

Let W; My, My be embedded in S*+* X (I; {0}, {1}) with relative
regular neighborhood R (i.e. RN\S™* X {i} = Q; is a regular neighbor-
hood of M;in S**X {3},i=0, 1). Let 9R = closure IR — S**+* X {0, 1}.
Then ORCR is a (k—1)-spherical fibration and dRNQ;=090Q0:ZQ;
is the induced (2—1)-spherical fibration.

A P.D. pair M, M is a P.D. cobordism M;dM, &. If W; M,, M,
is a P.D. cobordism then M,, M; are P.D. spaces of one lower dimen-
sion. For a P.D. space M let v,(M) be the fibration corresponding to
ORCR; for a P.D. cobordism W; Mo, M let vi,(W; My, M;) be the
fibration corresponding to dRCR.

A Generalized Thom Spectrum is a spectrum defined as follows:
let &:E,—B; be a sequence of (k—1)-spherical fibrations, k=1.
Let 4:By—Byya be maps covered by spherical-fibration maps
br D e~k

Let the Thom complex T'(£*%) be the space MM \JcEy, i.e. the map-
ping cylinder of &,: E;—B; union the cone on E; with the top of the
mapping cylinder identified with the base of the cone. There are
natural maps 2 T(¢)—T((k41). This forms the generalized Thom
spectrum 7.

Let S be the spectrum got by taking By=Biy1 - - - =point; thus
S is the sphere spectrum. If T is any spectrum as above, we assume
that there are base points in each By, preserved by . This gives an
inclusion of spectra SCT.

A T-P.D. space (or simply T-space) is a P.D. space M together
with maps of spherical fibrations f v, (M)—%; so that
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commutes (k large). We denote such an object by (M, f).

Similarly, a T-cobordism is a P.D. cobordism W; M,, M, together
with maps gi:v(W; Mo, Mi)—&. Two T-spaces (M, f°), (M, f1)
are said to be T-cobordant iff there is a T-cobordism W; M,, M;; g so
that f, =g o i, where 4} is the natural map »(M;) Svi(W; M,, M),
j=0, 1.

T-cobordism is an equivalence relation, and the operation of taking
disjoint union defines a group on equivalence classes, so that we get a
graded group Q% (graded by dimension). Of course, if we were dealing
with PL or orthogonal bundles we would have the formula Q% =m T,
where 7 denotes stable homotopy of the spectrum. However, it is
well known that this is not the case for generalized Thom spectra. In
particular, if T arises from &, =universal orientable spherical fibra-
tion, i.e. By =BSG(k), then it is known that m«T is finite whereas
Qf is of infinite order because there is a well-defined nontrivial homo-
morphism (the index) to the integers.

Our purpose then is to study the relationship between Q% and 7T
In this paper, we state some important results. A full exposition will
appear later.

2. The Pontrjagin-Thom construction yields a homomorphism
p:Q5—mT. We will attempt to elucidate some properties of p. We
restrict our attention to the case where & is oriented and ¢, respects
orientation.

We will first need to analyze a certain graded group Qx, which is
defined as the kernel of p:Q5—mS. It is easily seen that there are
short exact sequences

00— L s —o.

(The fact that p is onto follows immediately from the fact that the
isomorphism between ordinary framed cobordism of manifolds and
7S factors through Q%.)

LEmMMA 1. For 1=35, Q;=m; G/Top. Recall w; G/Top=0, ¢ odd;
Z,1=0 (4); Z., =2 (4).

This is really a paraphrase of the fact that two elements in Qs
125, are equal if and only if they have the same index-Arf invariant.
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Recent work of F. Quinn suggests that this is true for £=3, 4 as well.
We conjecture that this is true, in fact, for all <. (For the definition of
the Arf invariant on pr,z, see [1].)

3. Now let NV be a compact PL manifold of dimension 7, and let
£:E—B be a (k—1)-spherical fibration T'(§) =9\UcE. Let f:N
—T(). Set R=f"1(My), Q=f"'(cE), D=f"YE), (E=IM/\cE) so
that D=RMNQ. We say that f is transverse regular iff R, Q are co-
dimension 0 submanifolds of N, dR=90Q =D and

D— E
lc |c
R — M,

is, up to homotopy, a map of (¢ —1)-spherical fibrations. Thus, Risa
P.D. space of dimension 7 —k. A similar definition can be made if N
is a manifold with boundary.

THEOREM 1. Let N, £ be as above, with k=6, r<3k—3, or with
k=3, r<2k—1. Let f: N>T(§) be a continuous map. Then there are
obstructions to deforming f to a transverse regular map which lie in

Hi(N, Qi-1).

Actually, for a suitable definition of transverse regularity, Theorem
1 holds true for N an arbitrary complex.

Theorem 1 can be elucidated by considering the following construc-
tion:

First, T'(¢) — * is an open set @ of T'(§). (Here, * is the cone point
of cE.) We may assume that there is a contractible open set 0C ®;
Nele S M, and Mio\J (cE—E) is an open set @ of T'(§). { Q, (B} is an
open cover of T'(£). Let @(¢) be the semisimplicial complex whose j-
simplices are maps ¢:A7—T'(£) where ¢(A?) & @ or (A7) ©® and where
o is transverse regular on A7 and all its faces. There is a natural map
@(¢)—T (). The obstructions of Theorem 1 measure the possibility
that a map to T(¢) may be deformed so that it can be lifted to @(£).
If T is a Generalized Thom Spectrum defined by &, k=1, 2, - - - then
we can make {&(£)} into a spectrum W (7" so that the maps &(:)
—T(§:) define a map of spectra W (T)—T.

We can define a semisimplicial complex w(£) similar to @(¢) by
simply ignoring the condition that image ¢E @ or ®, and requiring
only that ¢ be transverse regular on A7 and all its faces. Thus &(§)
Cw(f). Similarly, given a Generalized Thom Spectrum, the complexes
w(£:) form a spectrum W (7). It turns out that mW(7T) =0%, and that
the natural map ‘W (7")—T is a representative, on the level of spectra,
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of the Pontrjagin-Thom map.
THEOREM 2. There is an exact sequence
s = Q= W(T) = wi(T) = Qi — - -

This follows from Theorem 1.

We conjecture that W(I) S W(T) is a homotopy equivalence. This
would allow the substitution of Qf for 77 (T) in the exact sequence
above.

4. Consider a Generalized Thom Spectrum 7. If (M, f) is a T-space
and if g: M'—M is a degree-one map covered by ¥y :v,(M')—v (M),
large k, then setting fi=f% oy¢; defines another T-space (M’, f’).
We say that (M, f') is related to (M, f’). Consider the equivalence
relation =2 generated by this relation; dividing by =2 defines a
quotient group T of %, and it is easy to see that p:Qf—mT factors
through po: T5—mT.

THEOREM 3. po is @ monomorphism; in fact, for 1=6, #4k+3, po is
an isomorphism; for =17, =4k-+3, coker po s at most Z,.

Theorem 3 follows from Theorem 1 and some of the techniques of
Theorem 2. We outline the proof: To show p, is monic, we first show
that if M, f represents an element in the kernel of po: 77— T then
there is an M?, f* related to M, f so that [M?, f1]E€Q] is in the image
of 7 W(T)—mW(T) =Q7. One then shows by means of the exact
sequence that M1, flis T cobordant to M?, f? so that M2, f?is actually
a G-framed P.D., space, i.e. M?, f? is an S-space, and represents an
element in Q.. It is easy to show then that there is a T-space (in fact,
an S-space) M3, f? related to M2, f%, and M3, f® is T-cobordant (in
fact, S-cobordant) to zero. Thus M, f represents zero in T7, and o
is monic.

To show the rest of Theorem 3, we merely use the computation of
Q« of Lemma 1.

5. Some conjectures are suggested by the above. First, let O¢
denote sth loop space (instead of the customary notation ©¢). Then
given the spectrum T, W(T), we get spaces A(T)=Ilim OT(£,),
B(T) =lim O'w(£;) so that med (T) =74 T, mxB(T) =mW (T) =Q%. The
map of spectra W (7T")—T becomes a map B(T)—A(T); and if we have
a map of Generalized Thom Spectra T— U we get a homotopy com-
mutative square

B(T) — B(U)

! !
A(T) — A(U).
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Let C(T') =fiber B(T)—A(T). Then we conjecture that C(T) =G/Top
and

G/Top = G/Top

! )
B(T) — B(U)

! ]
A(T) — A(U)

is a map of fibrations. If we abandon the condition that T be defined
by orientable fibrations .Sy, we then conjecture that C(T) is a space
whose homotopy realizes the L-groups of some appropriate group

(see [3], [4]).
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