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1. A Poincaré duality space (abbreviated P.D. space) of dimension 
n ^ 0 is a finite complex M with the following property. 

Let M be embedded in Sn+k, k large, and let Rhea, regular neighbor­
hood; then the inclusion dRClR, when converted to a fibration, has 
fiber a (k — 1)-sphere. 

Similarly a Poincaré cobordism (W; M0, Mi) of dimension n+1 
is a triad with the following property. 

Let W; Mo, Mx be embedded in Sn+kX(I; {o}, {l}) with relative 
regular neighborhood R (i.e. Rf^Sn+kX {i} « Q% is a regular neighbor-
hood olMiinSn+kx{i},i~0,l).LetdR~closmedR---Sn+kX {0,1}. 
Then öi^Ci? is a (&-1)-spherical fibration and dRl^Qi^dQiQQi 
is the induced (fe —1)-spherical fibration. 

A P.D. pair M, dM is a P.D. cobordism M; dM, 0 . If W; M0, Mi 
is a P.D. cobordism then M0, Mi are P.D. spaces of one lower dimen­
sion. For a P.D. space M let vk(M) be the fibration corresponding to 
32?QR', for a P.D. cobordism W; Jlf0, -Mi let ^(TF; ikf0, Mi) be the 
fibration corresponding to dRQR. 

A Generalized Thom Spectrum is a spectrum defined as follows: 
let %k:Ek—>Bk be a sequence of (& —1)-spherical fibrations, & ê l . 
Let \l/k:Bk—*Bk+i be maps covered by spherical-fibration maps 

Let the Thom complex T(t-Xi) be the space ^TC^VJc-E*, i.e. the map­
ping cylinder of %k:Ek—>Bk union the cone on Ek with the top of the 
mapping cylinder identified with the base of the cone. There are 
natural maps ^T^-^Tfa+i). This forms the generalized Thom 
spectrum T. 

Let 5 be the spectrum got by taking Bk = Bk+i • • • = point; thus 
S is the sphere spectrum. If T is any spectrum as above, we assume 
that there are base points in each Bkl preserved by \[/. This gives an 
inclusion of spectra SQ T. 

A T-P.D. space (or simply T-space) is a P.D. space M together 
with maps of spherical fibrations fk*Vk(M)—>%k so that 
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Vk @ 6 >Vk+l 

lfk®J l / H l 
& © 1 —>fib+l 

commutes (k large). We denote such an object by ( I f , / ) . 
Similarly, a T-cobordism is a P.D. cobordism W; Mo, M\ together 

with maps gh:v(W; M0, Afi)->&. Two T-spaces (M0, jf°), (Mi, jf1) 
are said to be T-cobordant iff there is a T-cobordism W; Mo, M\\ g so 
that fk=gh oily where i{ is the natural map Vk(Mj)Qvk(W; Mo, Mi), 
i = 0, 1. 

jH-cobordism is an equivalence relation, and the operation of taking 
disjoint union defines a group on equivalence classes, so that we get a 
graded group fl* (graded by dimension). Of course, if we were dealing 
with PL or orthogonal bundles we would have the formula fl*=7r*!T, 
where 7r* denotes stable homotopy of the spectrum. However, it is 
well known that this is not the case for generalized Thorn spectra. In 
particular, if T arises from & = universal orientable spherical fibra-
tion, i.e. i3& = BSG(fe), then it is known that TT*T is finite whereas 
üli is of infinite order because there is a well-defined nontrivial homo-
morphism (the index) to the integers. 

Our purpose then is to study the relationship between Ö* and TT*T. 
In this paper, we state some important results. A full exposition will 
appear later. 

2. The Pontrjagin-Thom construction yields a homomorphism 
p:QÜ—>ir*T. We will at tempt to elucidate some properties of p. We 
restrict our attention to the case where £* is oriented and 4>k respects 
orientation. 

We will first need to analyze a certain graded group Q*, which is 
defined as the kernel of £:Q*—»7r*5. I t is easily seen that there are 
short exact sequences 

(The fact that p is onto follows immediately from the fact that the 
isomorphism between ordinary framed cobordism of manifolds and 
7r*S factors through 0*.) 

LEMMA 1. For i^S, Q»=7rt- G/Top. Recall 7i\- G/Top = 0, i odd; 
Z , i ^ 0 ( 4 ) ; Z 2 , ^ 2 (4). 

This is really a paraphrase of the fact that two elements in Qi, 
i*z5, are equal if and only if they have the same index-Arf invariant. 
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Recent work of F. Quinn suggests that this is true for i = 3, 4 as well. 
We conjecture that this is true, in fact, for all i. (For the definition of 
the Arf invariant on Qfj+2, see [l ].) 

3. Now let N be a compact PL manifold of dimension r, and let 
%:E->B be a (&-1)-spherical fibration r({) = 9fTC«UcE. Let f:N 
- > r ( ö . Set R=f-*(mi), Q=tKcE), P =ƒ-!(£) , (JE-STC/VE) so 
that D=Rr\Q. We say that ƒ is transverse regular iff Rt Q are co-
dimension 0 submanifolds of N, dR = dQ = D and 

D—+E 

le le 
# — > s n z { 

is, up to homotopy, a map of (&—-1)-spherical fibrations. Thus, R is a 
P.D. space of dimension r — k. A similar definition can be made if N 
is a manifold with boundary. 

THEOREM 1. Let N, £ be as above, with fee 6, r^3fe —3, or with 
fee 3, r^2fe — 1 . Let f:N—>T(!;) be a continuous map. Then there are 
obstructions to deforming f to a transverse regular map which lie in 
H*(N, C « - i ) . 

Actually, for a suitable definition of transverse regularity, Theorem 
1 holds true for N an arbitrary complex. 

Theorem 1 can be elucidated by considering the following construc­
tion: 

First, T(£) — * is an open set Cfc of T(%). (Here, * is the cone point 
of cE.) We may assume that there is a contractible open set 0C(B; 
9TC*le£9TCs, and ÏP&zie^J (cE — E) is an open set (B of r(£) . { a, (&} is an 
open cover of T(g). Let w(£) be the semisimplicial complex whose j -
simplices are maps <r:A?'-->r(£) where cr(A')£ü> or <r(A0£(B and where 
a is transverse regular on A*' and all its faces. There is a natural map 
û (£)—•» 2" (£)• The obstructions of Theorem 1 measure the possibility 
that a map to T(%) may be deformed so that it can be lifted to <£(£). 
If T is a Generalized Thorn Spectrum defined by £*., fe = 1, 2, • • • then 
we can make {«(£*)} into a spectrum W ( r ) so that the maps «(£*) 
—>2r,(Çjb) define a map of spectra v?(T)—*T. 

We can define a semisimplicial complex co(£) similar to w(£) by 
simply ignoring the condition that image <rQ® or (B, and requiring 
only that a be transverse regular on Aj and all its faces. Thus cö(£) 
Cco(£). Similarly, given a Generalized Thorn Spectrum, the complexes 
w(60 form a spectrum W ( r ) . I t turns out that ir^(T) = fl*, and that 
the natural map V^(T)--^T is a representative, on the level of spectra, 
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of the Pontrjagin-Thom map. 

THEOREM 2. There is an exact sequence 

>Qi->Ti
;W(T)-*Ti(T)->Qi-1-+. • • . 

This follows from Theorem 1. 
We conjecture that W(T)QV^(T) is a homotopy equivalence. This 

would allow the substitution of Of for iriW(T) in the exact sequence 
above. 

4. Consider a Generalized Thorn Spectrum T. If (M,f) is a jf-space 
and if g:M'—*M is a degree-one map covered by \l/kli>k(M')-*i'k(M), 
large k, then setting ƒi = ƒ& o ̂  defines another T-space (ikf', ƒ'). 
We say that (M',f) is related to (M',f). Consider the equivalence 
relation S generated by this relation; dividing by =~ defines a 
quotient group T* of £2*, and it is easy to see that p:Sl*—>7r*T factors 
through po : r*-^7r* T. 

THEOREM 3. p0 is a monomorphism; in fact, for ig:6, 5^4fe+3, po is 
an isomorphism; for i^7, = 4fe+3, coker pa is at most Z<z. 

Theorem 3 follows from Theorem 1 and some of the techniques of 
Theorem 2. We outline the proof: To show po is monic, we first show 
that if M, ƒ represents an element in the kernel of pol rf—*7rt\T then 
there is an Af1, f1 related to My ƒ so that [M\ Z 1 ] © ^ is in the image 
of wfW(T)-+iri'W(T) ==$. One then shows by means of the exact 
sequence that Ml> f1 is Tcobordant to M2,f2 so that M2,f2 is actually 
a G-framed P.D., space, i.e. M2

y f
2 is an S-space, and represents an 

element in Qi. I t is easy to show then that there is a T-space (in fact, 
an S-space) M\ ƒ3 related to Af2, /2 , and M\ f is T-cobordant (in 
fact, S-cobordant) to zero. Thus M, ƒ represents zero in rf , and po 
is monic. 

To show the rest of Theorem 3, we merely use the computation of 
Q* of Lemma 1. 

5. Some conjectures are suggested by the above. First, let 0{ 

denote iih loop space (instead of the customary notation 0*). Then 
given the spectrum T, V?(T), we get spaces ^4(r )=l im OT(£«), 
B(T) =lim 0*w(&) so that T*A(T) =ir*T1 T*B(T) =TT*V?(T) = Q J . The 
map of spectra V?(T)—*T becomes a map B(T)—>A (T) ; and if we have 
a map of Generalized Thorn Spectra T—» U we get a homotopy com­
mutative square 

B(T) -* JB(Z7) 

1 I 
4(20 -*A(U). 
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Let C{T) = fiber B(T)-*A (T). Then we conjecture that C(T) = G/Top 
and 

G/Top = G/Top 

ï l 
B(T) -» B(U) 

4 4 
^ ( D -> A(U) 

is a map of fibrations. If we abandon the condition that T be defined 
by orientable fibrations S&, we then conjecture that C(T) is a space 
whose homotopy realizes the L-groups of some appropriate group 
(see [3], [4]). 
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