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Let C=CJ0, 1] be the space of continuous functions on [0, 1] with
the uniform topology, that is the distance between two points x and
v (two functions x and y of t& [0, 1]) is defined by

p(x, y) = sgpl w(t) — ()| .

Let ® be the o-field of Borel sets of C.

Let (2, @, P) be some probability space and W be the Wiener
measure on (C, ®) with the corresponding Wiener process
{Wg(w) 0511 }, w&EQ; that is W, has values in C and is specified
by E(W) =0 and E(W,W,)=s if s<t. Let W° be the Gaussian mea-
sure on (C, ®) constructed by setting W?=W,—tWi. Then W'EC,
EWYH=0 and E(WW?) =s(1—1) if s<t. Also Wi=W3I=0 with
probability 1 and {W?:0<¢=<1} is called the tied down Wiener
process or the Brownian bridge.

Let Sp=&+4+ - - - +&,, So=0, n=1, 2, - - - be the partial sum
sequence of random variables {£.} defined on (®, @, P). Define a
random element X, of C by

(1) Xu(t, @) = Wa(t, &) + (nt — [nt])Emasa(w)/n'/? — tWa(1, w)

where W, (¢, w) = Sy (w) /nV2. The following theorem is an immediate
consequence of L. Breiman’s analysis of §§13.5 and 13.6 in his
book [3].

TrHEOREM B. Suppose the random variables &1, &, + - + are indepen-
dent and identically distributed with mean zero and variance 1. Then the
random functions X, defined by (1) satisfy

D
2 X, — We.

Here (2), and also similar relations later on, are interpreted in accor-
dance with (4.5) and (4.7) of Billingsley’s book [2], depending on
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whether W is construed as a random function or as a measure in the
spirit of [2, p. 65]; the meaning is the same for the two interpreta-
tions. Since h(x) =sup¢l x(t)‘ with x(t) =w() —tw(1) is a continuous
function on Cin the sup-norm metric, (2) implies

EY) )
sup[ X,.(t){ —>supl th ,
1 t

an invariance principle, as statements like this are often called.
Similarly,

D 0 . D . 0
sup X,() —sup W4, inf X, (f) —inf W,.
t t 12 t
For each #, let v, be a positive-integer-valued random variable

defined on the same probability space as the £,. Define X,, a random
element of C, asin (1), and Y, another random element of C, by

(3) Y’n(ty w) = XV,, ("’)(ti w)'
THEOREM 1. Suppose the random variables &, &, - - - are indepen-
dent and identically distributed with mean zero and variance 1. If
P
4 Vo —> v,

where v is a positive random variadble, and

P
(%) £p,0(w)/(va(w))V2— 0,  for every fixed t,
then the random functions Y, defined by (3) satisfy

D
(6) Y, — Wo.

COROLLARY 1. Under the same assumptions as in Theorem 1 (6)
implies

D 0
sup| Ya(9)| —sup| W],
t t
D
sup V,(¢) —sup W(:,
t t
. D, 0
inf ¥,(f) —»inf W,.
t 12

REMARK 1. Let D be the space D of Chapter 3 of P. Billingsley's
book [2]. Define random elements X, ¥ of D by
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(7 Xnly 0) = Walt, ) — tWa(l, o),
®) Valt, ) = Xy (ty ©)

with W,(, w) as in (1). Then Theorem B holds for X} of (7) and,
omitting condition (5), Theorem 1 holds for ¥y of (8). Also, in defin-
ing ¥, of (3) and Y of (8) it is not essential that the random variables
{‘g’,,} involved should be independent and identically distributed with
unit variance. We have stated Theorem 1 here for random elements
of C and for independent identically distributed random variables
having unit variance only because it is, as will be shown later,
directly applicable in this form to prove the random-sample-size
Kolmogorov-Smirnov theorems. More general versions of Theorem 1
and detailed proofs of them will appear in [4]. We also note that for
Y, of (3) one postulates (5), for it is not true in general that £, /nY/?
2,0and (4) imply (5).

For the proof of Theorem 1 we use Theorem B, Theorems 7.7, 8.1,
8.2 of P. Billingsley's book [2] and results of A. Rényi [7] and
J. Mogyorédi [5]. First we show that for a single time point s { X () }
is mixing with the normal distribution function N(0, s(1 —s)) in the
sense of A. Rényi’s definition of mixing sequences of events [7] and
that it also satisfies the tightness condition of F. J. Anscombe [1].
Then, using Theorem B, Theorem 7.7 of [2] and Theorem 2 of [5],
we show that the finite-dimensional distributions of Y, of (3) con-
verge to those of W9 Next it is verified that the sequence {Y,,} is
tight in the sense of Theorem 8.2 of [2] and then Theorem 1 follows
from Theorem 8.1 of [2]. Details of this proof will appear in [4].

Let Uy, + -+, U. be independent random variables uniformly
distributed on [0, 1]. The order statistics are defined as follows: U™ '
is the smallest, and so forth; U™ is the largest. Let

F.(#) = (the number of the U; < )/, ¢t& [0, 1].
Define the Kolmogorov-Smirnov statistics

=n'" sup(F.() — ) = n’ max(k/n — U;n)),
t ksn

D; = n'" inf(Fa() — ) = n'"* min (t/n — U,
¢ k=n

D, = nmsup I t— F,,(t)l = nm max[ U,ﬁn) - k/n] ,
t ESn

and the random-sample-size Kolmogorov-Smirnov statistics A;
=D} Ay =D, ,A,=D,,.
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THEOREM 2. Under condition (4) of Theorem 1 we have
+ iD 0 — & . 0 :D 0
An, —sup W, A, —inf Wy, A, —sup | W]
1] 17 it
Proor oF THEOREM 2. Let S(n)=H+ -« - +&a, n=1,2, - -+ be
the partial sum sequence of independent exponential random vari-

ables {{»} with mean 1. L. Breiman [3, §13.6] obtained the following
representation of D,

S(k) k

D” = n1/2 max | ————— — —

) ese S +1)  =n
( D n Sk) —k kE Sn+1)—n

’

= ———— max

S 4 1) zsn nt/2 n nt/2
with analogous expressions for Dy and D . Here ® means that the
random variables in question have the same distribution. Put
tn=Cn—1, Sk =S(k) —kand W,(@, w) =Sy (w)/nY2 Then

D *
D, = sup| X.(t, w) ! , for » large,
(10) ‘

D
= sup| Xa(t, w) ! , for » large,
t

where X: and X, are respectively defined in terms of the above &, and
W, via (7) and (1). Analogous asymptotic representations hold for
D} and Dj . The first asymptotic representation of (10) for D, is true
because E(¢{,) =02(¢,) =1 and hence 7/S(n+1)2%1 and {n41/nY250,
while the second asymptotic representation of (10) is the consequence
of £tng41/nY250 uniformly in ¢. The X, of (10) satisfy the conditions
of Theorem B and the usual Kolmogorov-Smirnov theorems follow.
For A, we have (9) with % replaced by », on both sides. Now we show

An

sup | Y:(t, w) | , for n large,
(11) ‘

I

sup| Va(t, @) |, for » large,
t

where Yy and Y, are respectively defined in terms of the above &,
and W, via (8) and (3); we also have the analogous asymptotic ex-
pressions for A} and A; . It is true in general that if {Z,} is a sequence
of random variables such that Z,®%,Z and {».} is a sequence of
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positive-integer-valued random variables such that »,5+ o, then
Z,,5Z. Now condition (4) of Theorem 1 implies 7,55+ and we
have n/S(n+1)2%1. Consequently, 7,/S@w,~+1)51. Using the fact
that the {, are exponential random variables with mean 1 and that
vty o, it can be easily shown that {,41/v? and £p,041/v? both
converge in probability to zero, the latter one uniformly in ¢. Hence
both asymptotic representations of (11) are true. Also, given condi-
tion (4), the Y, of (11) satisfy the conditions of Theorem 1 and hence
Y, W0. The statements of Theorem 2 now follow from Corollary 1.

REMARK 2. Theorem 2 with »=1 in (4) was proved by R. Pyke [6]
in an interesting and different way, utilizing results about stochastic
processes with two-dimensional parameter sets. We should also note
that proving appropriate versions of Theorem 1, random-sample-size
versions of the Kolmogorov-Smirnov theorems with weight functions
like

f@ =1/,  1/(0 =) and 1/[(1 =]V,

which are important in applications, can also be proved in a similar
way as well as two or more-sample random-sample-size versions.
Statements and proofs for these results will also appear in [4].
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