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Let C— C[0, l ] be the space of continuous functions on [0, l ] with 
the uniform topology, that is the distance between two points x and 
y (two functions x and y of ££ [0,1 ]) is defined by 

p(a?, y) = sup | x(t) - y(t) | . 
t 

Let (B be the cr-field of Borel sets of C. 
Let (0, Ct, P ) be some probability space and W be the Wiener 

measure on (C, <£) with the corresponding Wiener process 
{ W t ( o ) ) : 0 S t ^ l } , coGO; that is Wt has values in C and is specified 
by E(Wt)=0 and E(W.Wt)=s ifs^t. Let W° be the Gaussian mea­
sure on (C, (B) constructed by setting WÏ = Wt—tWi. Then W°tEC, 
E ( W ? ) = 0 and E(W^TF?) - 5 ( 1 -* ) if s;g*. Also Wg = W? = 0 with 
probability 1 and {W^lO^t^l} is called the tied down Wiener 
process or the Brownian bridge. 

Let Sn = £i + • * • +£n, 5o = 0, » = 1, 2, • • • be the partial sum 
sequence of random variables {£M} defined on (Q, Cfc, P ) . Define a 
random element Xn of C by 

(1) Xn(t, co) = Wn(t, co) + (»< - [nt])tM+i(f*)/nU* - tWn(l, «) 

where PFnO, eo) = S[nt](co)/n112. The following theorem is an immediate 
consequence of L. Breiman's analysis of §§13.5 and 13.6 in his 
book [3]. 

THEOREM B. Suppose the random variables £i, £2, • • • are indepen­
dent and identically distributed with mean zero and variance 1. Then the 
random f unctions Xn defined by (1) satisfy 

(2) Xn-*W°. 

Here (2), and also similar relations later on, are interpreted in accor­
dance with (4.5) and (4.7) of Billingsley's book [2], depending on 
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whether W° is construed as a random function or as a measure in the 
spirit of [2, p. 65]; the meaning is the same for the two interpreta­
tions. Since h(x) = supt\x(t)\ with x(t) =w(t) —tw(l) is a continuous 
function on Cin the sup-norm metric, (2) implies 

sup I Xn(t)\ ~>sup| w]\ , 
t t 

an invariance principle, as statements like this are often called. 
Similarly, 

3) 0 3D 0 
sup Xn(t) -* sup Wh inf Xn(t) -»inf Wt. 

t t t t 

For each n, let vn be a positive-integer-valued random variable 
defined on the same probability space as the £». Define X„, a random 
element of C, as in (1), and F», another random element of C, by 

(3) Fw(*, a>) = X,nM(t,œ). 

THEOREM 1. Suppose the random variables £1, £2, • • • are indepen­
dent and identically distributed with mean zero and variance 1. If 

P 
(4) r n /» -* v, 

where v is a positive random variable, and 

P 
(5) f[p»*](«)/(^n(co))1/2 —» 0, for every fixed t, 

then the random functions Yn defined by (3) satisfy 

3D 
(6) F n -* JF° . 

COROLLARY 1. Under the same assumptions as in Theorem 1 (6) 
implies 

sup I F„(0 I - » s u p | JF*| , 

/ N 3D 0 
sup Yn(t) —» sup PF*, 

, , 3D 0 
inf F n (0 -Mnf W%. 

REMARK 1. Let D be the space D of Chapter 3 of P. Billingsley's 
book [2]. Define random elements X*, F* of Z> by 
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(7) XÎ(t, co) = Wn(t, a>) - tWn(l, co), 

(8) Y*n(t,o>) = X* <•>(*,«) 

with Wn(t, co) as in (1). Then Theorem B holds for X% of (7) and, 
omitting condition (5), Theorem 1 holds for F* of (8). Also, in defin­
ing Yn of (3) and Y* of (8) it is not essential that the random variables 
{%n} involved should be independent and identically distributed with 
unit variance. We have stated Theorem 1 here for random elements 
of C and for independent identically distributed random variables 
having unit variance only because it is, as will be shown later, 
directly applicable in this form to prove the random-sample-size 
Kolmogorov-Smirnov theorems. More general versions of Theorem 1 
and detailed proofs of them will appear in [4]. We also note that for 
Yn of (3) one postulates (5), for it is not true in general that %[nt]/n1/2 

JP>0 and (4) imply (5). 
For the proof of Theorem 1 we use Theorem B, Theorems 7.7, 8.1, 

8.2 of P. Billingsley's book [2] and results of A. Rényi [7] and 
J. Mogyoródi [5]. First we show that for a single time point s {X*(s)} 
is mixing with the normal distribution function iV(0, 5(1—5)) in the 
sense of A. Renyi's definition of mixing sequences of events [7] and 
that it also satisfies the tightness condition of F. J. Anscombe [ l ] . 
Then, using Theorem B, Theorem 7.7 of [2] and Theorem 2 of [5], 
we show that the finite-dimensional distributions of Yn of (3) con­
verge to those of W°. Next it is verified that the sequence { Yn} is 
tight in the sense of Theorem 8.2 of [2] and then Theorem 1 follows 
from Theorem 8.1 of [2]. Details of this proof will appear in [4]. 

Let Uif • • • , Un be independent random variables uniformly 
distributed on [0, l ] . The order statistics are defined as follows: Z7in> 

is the smallest, and so forth ; U™ is the largest. Let 

Fn(t) = (the number of the U4 g t)/n, t £ [0, l ] . 

Define the Kolmogorov-Smirnov statistics 

Dn = n sup(Fw(/) — t) = n m&x(k/n — Uk ), 
t k£n 

•r<~- ! / 2 • r/T-. / \ \ X / 2 • /» / T T ( » \ 

Dn = n mi(Fn(t) — t) = n mm (k/n — t/* ), 
t k^n 

TÏ 1 / 2 I i E. / A I 1 / 2 ! T 7 ( n ) L / I 

Dn = n sup I t — Fn(f) I == n max | Uk — k/n | , 

and the random-sample-size Kolmogorov-Smirnov statistics Â " 
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THEOREM 2. Under condition (4) of Theorem 1 we have 

+ £> o 
An —* SUp Wh 

t 

- £> o 2D , o, 
An ~»inf Wt> An —> sup | Wt |. 

PROOF OF THEOREM 2. Let 5 ( w ) = f i + • • • +fn, n = lt 2, • • • be 
the partial sum sequence of independent exponential random vari­
ables {fn} with mean 1. L. Breiman [3, §13.6] obtained the following 
representation of Dn 

(9) 

D„ = n112 max 
ten 

33 » 

5(*) 
S(n + 1) 

5(*) 
max S(n + 1) fc^n 

Jfe S(n + 1) - « 
• 1/2 a/2 

with analogous expressions for D% and Dn . Here £ means that the 
random variables in question have the same distribution. Put 
£n = r n - l , Sk = S(k) ~k and Wn(t,o) « . W « ) / * 1 / f . Then 

£> 
At = sup | Xn(t, w) | , f or n large, 

(10) 
30 
== sup | Xn(t, co) | , for n large, 

where Xn and J£n are respectively defined in terms of the above %n and 
Wn via (7) and (1). Analogous asymptotic representations hold for 
D„ and D„. The first asymptotic representation of (10) for Dn is true 
because £(£„) =cr2(fn) = 1 and hence n/»S(n + l)-i±>l and fn+iA*1/2-^0, 
while the second asymptotic representation of (10) is the consequence 
of %int]+i/nll2-l->0 uniformly in t> The Xn of (10) satisfy the conditions 
of Theorem B and the usual Kolmogorov-Smirnov theorems follow. 
For An we have (9) with n replaced by vn on both sides. Now we show 

(ID 

30 * 
An = sup I Yn(t, o)) 

t 

= sup I F„(/, o)) 

for n large, 

for n large, 

where F* and Yn are respectively defined in terms of the above £n 

and Wn via (8) and (3) ; we also have the analogous asymptotic ex­
pressions for A^ and A^. I t is true in general that if {Zn} is a sequence 
of random variables such that Zn^t^Z and {vn} is a sequence of 
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positive-integer-valued random variables such that vn~»+ <*>, then 
ZVnI*Z. Now condition (4) of Theorem 1 implies pwJ-»+oo and we 
have n/S(n + l)±±*l. Consequently, vn/S(vn + l)J+l. Using the fact 
that the fw are exponential random variables with mean 1 and that 
vnJ->+ oo, it can be easily shown that Çvn+i/vl/2 and £[vn*]+iA»/2 both 
converge in probability to zero, the latter one uniformly in /. Hence 
both asymptotic representations of (11) are true. Also, given condi­
tion (4), the Yn of (11) satisfy the conditions of Theorem 1 and hence 
Yn^W°. The statements of Theorem 2 now follow from Corollary 1. 

REMARK 2. Theorem 2 with v = 1 in (4) was proved by R. Pyke [ó] 
in an interesting and different way, utilizing results about stochastic 
processes with two-dimensional parameter sets. We should also note 
that proving appropriate versions of Theorem 1, random-sample-size 
versions of the Kolmogorov-Smirnov theorems with weight functions 
like 

ƒ(*) = 1/*, 1/(1 - t) and l / [ / ( l - t)Yi\ 

which are important in applications, can also be proved in a similar 
way as well as two or more-sample random-sample-size versions. 
Statements and proofs for these results will also appear in [4]. 
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