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Let G be a bounded domain in RN with boundary dG. Then the 
system (for p(x) a strictly positive C'(G) function) 

p(x) utt — Au = 0 (in G), 

u/dG = 0, 

has a countably infinite number of distinct periodic solutions (i.e. 
"normal modes"). In this note we shall show that the same conclusion 
can be established for the nonlinear system 

p(x) utt — Au + f(x, u) = 0, 

u/dG = 0, 

under certain restrictions on the functions ƒ (x, u) and pipe). (Through­
out we assume ƒ(x, 0)==0, so that u(x, t) = 0 satisfies (2).) Further­
more similar results can be obtained for higher order systems in 
which the Laplace operator A is replaced by a strongly elliptic 
operator of order 2m and the boundary conditions are suitably 
altered (such systems occur in the theory of elastic vibrations). 

Our proofs are based on approximating the system (2) by a 
Hamiltonian system of ordinary differential equations, as in [4], The 
periodic solutions of the associated Hamiltonian systems are then 
investigated by the methods of the calculus of variations in the large, 
as studied by the author in [ l ] . Periodic solutions of the original 
system (2) are then obtained by taking limits. Previous mathematical 
studies of periodic solutions of (2) (e.g. [2], [3], [5]) have been pri­
marily perturbation results and have not considered the totality of 
periodic solutions of (2). 

1. Preliminaries. Let x denote a point in G and WI,2(GT) denote 
the Sobolev space of functions u(x, t), T-periodic in t, which are 
square integrable and possess square integrable derivatives over 
GX [0, T], By WI,2(GT) we denote the subspace of W\,I(GT) consisting 

of functions which vanish on dG (in the generalized sense). W\,I{GT) 
is a Hilbert space with respect to the inner product 
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(u, v)1$2 = I I {utVt + grad^-gradt;}. 
•J o J G 

By a jT-periodic weak solution of (2), we understand a function 
u{x, / ) £ P F I , 2 ( G T ) which satisfies the following integral identity for 
a l l * e # i . i ( G T ) : 

(3) 0 = 1 j {ut<t>t — grad « • grad <j> — ƒ(#, w)$}. 

Henceforth we shall study üT-periodic weak solutions u(x, i)?£0. 

2. Statement of results. First we discuss the existence of a global 
one-parameter family of periodic solutions of (2) whose frequency 
corresponds roughly to the lowest eigenvalue \\ of A on G. To this 
end, we assume that (i) f(x, u) satisfies the following growth condi­
tion: 

(*) | f(x, u)\ S K0 \u |, for \u | sufficiently large 

and F(x, u)^Kif(x, u)u where Fix, u)—flf(x, f)dt and K0, K\ are 
positive constants independent of u and x (ii) (It-)Xy/X< = integer is 
satisfied for a t most finitely many indices j , where X̂  denote the eigen­
values of A on G with respect to p(x). 

THEOREM 1. Let f(x, t) be a locally Lipschitz continuous function, 
odd in t, satisfying the conditions (*) and (Ii) and such that for all real t 
and xÇzG, tf(x, t) ^ 0 . Then the system (2) has a one-parameter family of 
distinct Ti(R)-periodic weak solutions ü\(R) where the parameter R 
is sufficiently small, provided f {x, t) = o(t) for small t. In addition, R and 
Ti(R) are related by 

(4) M-r,»^ fX-t-)-
Furthermore as R—»0, !Ti(i£)—»27rXj~\ where X? is the smallest eigenvalue 
of A. 

The next result concerns the existence of an infinite number of 
distinct one-parameter families of periodic solutions of (2), whose 
frequencies correspond roughly to the other eigenvalues of A on G. 

THEOREM 2. Letf(x, t) be a locally Lipschitz function of x and t, odd 
in t, satisfying the conditions (*) and (Ii), and such that f (x, t) =o(t) for 
small t. Then the system (2) has, for sufficiently small R, an infinite 
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number of distinct one-parameter families of Ti{R)-periodic weak solu­
tions Ui(R) (i = l, 2, • • • ), where R is defined by (4). Furthermore as 
R—>0> Ti{R)~^2ifKJl where X? denote the eigenvalues of A with respect to 
p(x) ordered by magnitude. 

3. Outline of proofs. Denote the eigenvalues (ordered by magni­
tude) and eigenfunctions of A with respect to p(x) by X? and Ui(x), 
respectively. Then approximate weak solutions of (2) by functions of 
the form ün= X X I <Z*n) (0^*0*0» where <ft(n)(0 axe functions to be deter­
mined. Substituting ün in (2) we find the following approximate 
equations for qtn)(t). 

(5) q" + Xiq" + I pf ( cc, X ft* uAui = 0 (i = 1, • • • , n). 

Setting t = as, we consider 27r-periodic solutions of the system 

(6) qt + a 

The 27T periodic solutions of (6) can be regarded as critical points of 
the functional 

9 n ( ? ( n ) ) = £ { s x ^ < B ) ) 2 + 1 o p 2 F (x' % q'n)u)} 
over the admissible class of odd, 27T periodic ^-vector functions qin) 

= (2in), qf\ • • • » (£?) such that Jl*(q^y=R, a positive constant. 
We compare these critical points with the critical points of the "lin­
earized" problem VR(n): i.e. the critical points of the functional 

J 0 t= l 

over the same admissible class of functions as above. The critical 
values of Vn{n) are proportional to \*/K2, (i = l, 2, • • • , n)> K an 
integer. In the following we order these critical values in decreasing 
order of magnitude and denote the critical value proportional to Xf 
as the n(i)th. number in this ordering (with multiplicities included). 

The proofs make use of 
(i) the techniques of the Ljusternik-Schnirelmann theory of critical 

points on Hilbert manifolds for fixed n, and 
(ii) a limiting selection procedure as n-^ <*>. 

Consider the set of continuous odd 27T periodic w-vector functions 

2 (n) 
+ J ƒ>ƒ(*, 2 ft" «ij «.• = 0 (i = 1, • • • , n). 
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q(n)(s) which possess a square integrable generalized derivative. This 
set forms a Hilbert space Hn with norm 

Î ~ 1 ^ 0 

In Hn we identify the antipodal points on the sphere Sn(R) 
= {qM\\\qM\\2 = R} to obtain the infinite dimensional real pro­
jective space P%(Hn), and by virtue of the evenness of 9n(<Z(n))> 
we consider Sn(<Z(w)) a s defined on Pu(Hn). To prove Theorem 1, we 
consider the variational problem 

V(n, 1): Cn(i)(R) = sup min Qn(q
(n)) 

iwud) w 

where 

[W]na> = {w\WC PZ(Hn), cat(TF, Pl{lf)) è *(1)}. 

The problem V(n, 1) has a solution q[f(s) which is a critical point of 
Qn(q(n)) and so satisfies (6) for some crn(1)(.R), thus giving rise to a 
27r(rn(i)(R) periodic solution of (5). As R runs through small positive 
values, one-parameter families of periodic solutions of (5) are gener­
ated; as in [ l ] . Now as n~»<*> for fixed R, the sequences {cn(i)(R) }> 
{crw(1)(i^)} and {|| 23?=i ^*(^)^w)(s)||i!2} are uniformly bounded, so 
that (after suitable reindexing) there are subsequences ûn(x, s) 
== ] L X J ui(%)Qin)(s) and <r„(i)(JR) such that ün(x, s)—>ü(x, s) weakly in 
WI,2(G2T) and anil)(R)-^a1(R) where f2

0"fG(dü/ds)2 = R. Hence 
ü{%, aïl(R)t) is a 2wai(R) periodic weak solution of (2), and as R—»0, 
one finds cri(R)—->l/\i provided ƒ(x, u)=o(u). Theorem 2 follows by 
replacing n(l) by ^(i) {i — 2, 3, 4, • • • } in the above argument. The 
existence of the above limits is proven by using conditions (*) and 
(I.) to find a priori bounds on un and its derivatives that are indepen­
dent of n. 

4. Extensions. (1) Let A be a strongly elliptic linear selfadjoint 
operator of order 2m. Then the methods used to prove Theorems 1 
and 2 can be applied to study the periodic solutions of the system 

Uu + (-l)mAu + f(x, u, Du, • • • , D2m~2u) = 0 in G 

DU\ÔG = 0 | a | S m — 1 

provided ƒ (x, u, • • • , D2m~2u) satisfies suitable positivity and growth 
conditions and is derivable as an Euler-Lagrange expression of a 
functional JGF(X, U, • • • , Dm~lu). 
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