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In this note we announce several results that are a continuation of 
the study initiated in [ l ] of the internal properties of the complex 
bordism homology functor applied to finite complexes and their ex­
ternal applications. The present work is an outgrowth of our attempts 
to better understand the results of [ l ] and [2], especially [l, §6] and 
[2, §§2-3] that deal with the study of 

Im{$(X)~»Q*(X)}, 

X a finite complex. This has brought us into contact with many new 
and interesting questions concerning the readabi l i ty of certain cyclic 
S2*-modules as complex bordism modules of finite complexes. Need­
less to say it has also involved us in the stable homotopy groups of 
spheres, particularly with the occurrence of certain types of infinite 
families of elements in the ^-component (see the discussion below). 

The particular 0*-modules that are of interest to us will require 
some preparation to describe. Let us therefore fix an odd prime inte­
ger p. We recall that there are [/-manifolds V2p%~2, of dimension 
2pi — 2, all of whose mod p Chern numbers vanish, but are accept­
able polynomial generators for 0* in dimension 2pi — 2 [3], [4]. What 
we seek is for each nonnegative integer n a finite complex V(n) such 
that 

as an fl*-module. 
For « = 0 we may choose for the space V(0) the Moore space 

S1]Upe
2 where p : SX-^SX is a map of degree p. We then know (see e.g. 

[2, §3]) that 

Im{f£r(7(0)) -*0*V(0))} 

consists of the subgroup generated by the elements 
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where ö"£Öf (Siyüpe
2) is the canonical generator. Thus for each integer 

/ ̂  0 we obtain stable mappings 

<t>t:S2^2t+1-^S1[UPe2 

where 

^ w w , <t>t] = [F2*-2] fa­

in ^ ( S 1 ^ 2 ) . 

THEOREM I. With the above notations the composite 

qfaiS**^»*1 -> S1 U , e2 -> S2 

<t>t q 

is stably essential f or each £ = 1, 2, • • • ; where q denotes the natural 
quotient mapping. We thus obtain elements 

r T
 s 

[q<t)t\ T ^ O G 7r2*(p_i)-i, / = 1, 2, • • • 

which may be seen to be of order p. (Here we have written T% for Q% the 
stable homotopy ring of spheres.) 

A detailed comparison of the proof of this result with the construc­
tions of [5 ] brings forth the equality 

[#*] = au t = 1, 2, • • • 

where {at} is the infinite family of elements introduced by Toda [S]. 
As the mapping 

4> = falS^-tViO) 

has order p it may be extended to a mapping 

t:S2^AV(0)-+V(0), 

and one easily obtains: 

THEOREM I I . With the above notation let C(<?) denote the mapping 
cone of $. Then 

Qu*(C(i))ç*nï/(P,[v2p-i]). 

Thus for the space V(l) we may select C(<f). Our next task is to 
take up the study of 

Im{C(F(l))->0*V(l))}. 

With the aid of the Adams spectral sequence we obtain: 
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THEOREM I I I . Let p be a prime, p>3. Then with the above notation, 
there exists for each nonnegative integer t a stable map 

^ : S " < I * - I > + I _ > 7 ( 1 ) 

such that 

in S2*(F(1)), whereaÇEQr?(V(l)) is the canonical class. 

The space V(l) is seen to have a stable cell structure 

7(1) = 51 \jp e* U* #* KJP e**\ 

Let 

q\V{\) - • S 2 * * 1 

denote the natural quotient mapping. 
The following theorem then constitutes our main result. 

THEOREM IV. Let p be a prime, p>3. Then with the above notations 
the composite 

qfa:S2t<»*-l)+l -> 7(1) ->S2*>+1 

fa q 

is stably essential f or t = l, 2, • • • . We thus obtain elements 

r i 8 

[q^t\ 7* 0 G Tr2p(tp-i)-2h t = 1, 2, • • • 

which are of order p. 

Upon observing that 

2p(tp - 1) - It = 2{p - l)(tp + t - 1) - 2 

it is natural to conjecture that (appropriately constructed) the ele­
ments { [qi/t]:t=lt • • • } generalize the elements {j3 t:£=l, • • • ,p+l} 
introduced by Toda in [5] when p>3. (The elements [qfa] and ft 
may be seen to coincide because w% (P-i)~2(p)=Zp with generator 
& [5].) 

The mapping, for p>3, 

$ = ^1:52^2-1-->F(1) 

is shown to extend to a mapping 

and we obtain: 
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THEOREM V. With the above notation let CQ/) denote the mapping 
cone of\j/. Then for all primes p,p>3, we have 

Thus for the space V(2) we may select C(#) whenever p is a prime 
strictly greater than 3. In view of our discussion above we should next 
take up the study of 

Im{ïC(F(2))-»Ö»V(2)). 
I t is quite tempting to conjecture that this image is generated by the 
classes 

{[v»*-*Yv\t = o,i,---} 

as an abelian group when p is a suitably chosen prime, say p>5. We 
have however been unable to establish this and are therefore unable 
at present to construct a space V(3) for any prime. The situation for 
£ = 2 is exceptional and is discussed in [2]. The situation for p = 3 
becomes exceptional in the study of 

I m { c i r ( 7 ( l ) ) ^ 0 ? ( F ( l ) ) } . 

We may construct \pi for p = 3 but it does not extend to \j/. Nor do we 
know which \f/t may be constructed. 

The existance of further spaces F(3), F(4), • • • in the series would 
seem to imply the presence of further infinite families of elements in 
the ^-component of the stable homotopy groups of spheres. This is a 
point that deserves further scrutiny and is at present under active 
investigation. 
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