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1. Introduction 

This paper is devoted to certain uses of integration theory which 
emerge when the measures involved are vector- or operator-valued. 
These uses, as yet generally unfamiliar, are significant in three ways: 

(1) They yield explicit formulations for many of the representation 
theorems of functional analysis; 
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(2) They provide a substitute for the notion of basis in analytical 
situations in which bases do not appear naturally; 

(3) They offer a means for the transition from the discrete to the 
continuous, and for subsumation of both continuous and dis­
crete theories in one framework. 

The remarks in 1.1-1.3 are intended to elucidate these three roles of 
integration. 

1.1. REPRESENTATION THEORY. Let X, F be compact Hausdorff 
spaces, C(X) be the set of all complex-valued, continuous functions 
on X, and 9TZ(F) be the set of regular, c.a. complex-valued bounded 
measures on the cr-algebra of Borel subsets of F. C(X) and 2fft(F) 
are Banach spaces under the usual norms. The statement 

(1) Given J , 3 F 9 201(F) is isometrically isomorphic to C(X)*, 

is then correct, but it is not as informative and explicit as the conclu­
sion of the Riesz Representation Theorem, viz. 

(2) 

F = Xj and the isometric isomorphism 2 on 9îl(X) onto 
C(X)* is given by 

V M G ^ ( I ) , { 2 ( M ) } / = ff(*Mdx), fGC(X). 

This illustrates how integration helps in making an isomorphism 
explicit. There is much value in carrying out such explication, for it 
suggests that the representation theorem stems from a generalized 
notion of convexity and so belongs to a rather universal part of 
mathematics. For instance, on writing £>x for the evaluation a t x, so 
that £*(ƒ) =ƒ(#), (2) becomes 

2(A0 = I »(dx)&x. 
J x 

If we transplant the measure JU from X to the set 8x= {s^xG-X} of 
evaluations over X, i.e. consider 9TC(8x) in place of 2HX(X), we get 
from (2), proceeding heuristically, 

(3) 2 0 * ) = f ju(<tes).Ss, /*e9TC(Sx) 

where 8* is a dummy variable ranging over 8x. But what (3) says is 
tha t 

(3') every F in C(X)* is the barycenter of a 
complex valued measure over 8x. 
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This strongly suggests that the evaluations 8X may be extreme points 
of a certain part of the unit sphere in C{X) *, and that our theorem 
may be a corollary of the Krein-Milman Theorem in its Choquet 
integral formulation, cf. [40].2 

We contend that integration with respect to the right kind of vec­
tor- and operator-valued measures likewise renders explicit many 
other representation theorems of analysis, among them Stone's 
Theorem on the unitary representation of a l.c.a. group; results on 
unitary transforms on L2-spaces, especially the Fourier-Plancherel 
duality between a l.c.a. group and its dual; Cooper's Theorem on the 
isometric representation of the semigroup [O, <*>), and the closely 
related translational and spectral representations of prediction 
theory, scattering theory and of invariant subspaces of the Hardy 
class H2; several results in eigenfunction expansions and perturbation 
theory; Mackey's Imprimitivity Theorem which generalizes the 
Weyl-Stone-von Neumann statement of the quantum mechanical 
commutation relations, etc. 

1.2. MEASURES AS SUBSTITUTES FOR BASES. Let X be a (complex) 
Banach space. We say that (£x, X£A), where £x£X, is a basis for X, 
iff3 

V x G I , 3 | Ox)xeA 3 cxEC and X) <fc£x cgs. & = x. 
XGA 

If an analytic problem involves a concrete Banach or Hubert func­
tion-space X and a basis attaches itself naturally to the problem, we 
could of course use it and expand functions in X in terms of the basic 
functions. But there are situations in which there is no such natural 
basis. A typical example is the Fourier-Plancherel theory for L2(R). 
L2(R) is separable and there are plenty of known o.n. bases, but all 
are irrelevant for the purposes of the F P theory. The basis we want 
is precisely the one which is not there, viz. (e\, \ÇER) where e\(t) = eiU; 
obviously e\^L2{R). 

Several solutions have been proposed to deal with such situations 
in which there are no relevant bases, but the one which seems most 
natural to the writer is to seek a a- or S-ring (B over the parameter 
space À and an X-valued, c.a. measure £ on (B such that 

2 Unfortunately, the Riesz Thm. is used in the current treatments of the Choquet 
theory, so at present it cannot be derived from Choquet's Thm. But the writer feels 
that this is a blemish of the current definition and treatment of the Choquet integral, 
and that a different but equivalent definition with a modified treatment would yield 
the Riesz Thm. as a corollary. 

8 " 31 . . . " means "there exists a unique . . . ". C denotes the complex number 
field. R will denote the real number field. 
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Vx G X, 3 | *(•) on A to C 3 I 0(X)£(dX) exists & = x. 
J A 

We might call such a £ a basic measure f or X. 
The only case in which a complete theory of such measures £ exists 

is the one in which X is a Hubert space 3C, and £ is akin to an orthog­
onal basis in 3C. Such measures £ are said to be orthogonally scattered. 
There is also a fairly well-advanced theory of such measures for 
inflated 3C3, inflation meaning that we consider 3C3 with qXq Gram 
matricial inner products, and pXq matrices in place of scalars. Again 
with X = 3C, a certain amount of work has been done on nonorthog-
onally scattered measures by probabilists interested in stochastic 
processes. But for X^3C, we do not know of any progress in this 
direction. 

From the work done so far it appears that for a useful theory of 
basic measures the following conditions should be met: 

(1) The parameter space A should be a subset of a locally compact 
abelian group with Haar measure /x, and (B should be the S-ring 
(BM of Borel sets of finite Haar measure, and moreover £<Kju; 

(2) Uniqueness should be interpreted as "uniqueness a.e., ju"; 
(3) Although £<3Cjtt, £ should not be the indefinite (Bochner) integral 

of M, i.e. the Radon-Nikod^m derivative d£/d[x should not exist.4 

1.3. TRANSITION FROM THE DISCRETE TO THE CONTINUOUS. Imagine 
that time is discrete, i.e. all instances of time are integers. A particle 
undergoes a random displacement yn in Rz a t each instant n ^ 0 , 
these successive displacements being independent. We interpret each 
yn as a function on a probability space (£2, #, P) and assume that 
3;WGL2(Û, #, P; Rz). The stochastic process (SP) (xn, w^O), where 
xn — ^2oJk may then be called a free random walk in Rz. 

We now take time to be continuous, and ask for the notion cor­
responding to a free random walk. Clearly we must consider variâtes 
xt(- ), where / £ [0, <*> ), and to exclude pathological cases demand that 
xt—>x8 in the mean as t—>s. I t is then clear that xt cannot be a con­
tinuous sum of independent random variâtes y$, O^sSt* We are 
therefore obliged to define a continuous time random walk by stipu­
lating the behavior of its increments, viz. as a SP (xt, / £ [0, <*>)) 
such that 

4 Roughly speaking, the RN Thm. should fail. This is because we want our measure 
£ to be "linearly independentn in the sense that /A<EQ0£ WX) =fs}P0^)^(d\) =$<f> — \[/ a.e. (/*). 
The Bochner integral of a vector-valued function w.r.t. a scalar measure does not 
satisfy such a condition. But the existence of d%/dn would entail this condition, and 
so produce a contradiction. 
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xb - xa G i«(0, ff, P ; JR3), O g a < b 

and 

#& — xa & #<* — #c are indep. when (a, b] || (c, d]. 

Such a process (#*(•)> *G [0, <*>)) is said to be of independent incre­
ments. The set-function £ defined by 

%(a,b] — Xb — Xa 

is clearly a measure on the prering (P of all open-closed subintervals 
(a, &] of [0, oo ) having values in the Hilbert space L2(12, g, P ; Rz)—a 
so-called random measure. 

We see here how the transition from discrete to continuous time 
took us from a vector-valued point-function x to a vector-valued 
measure £. 

For the especially important type of SP of independent increments 
known as the Brownian motion the associated vector-valued measure 
£ has the property 

(4) | £(a,6]12 = const.(b — a). 

By rescaling, the constant can be made 1. By (4), £ is absolutely con­
tinuous with respect to Lebesgue measure ju, but the occurrence of 
the square on the LHS shows that the RN derivative d^/dyi will not 
exist. Also this £ is unbounded, and even after maximal extension will 
be defined only on the S-ring of sets of finite Lebesgue measure. 

Another problem in the transition from the discrete to the con­
tinuous concerns the concept of wandering subspace due to Halmos 
[l4, p. 102]. Let (5n , n~ integer ^ 0 ) be a semigroup of isometries on 
a Hilbert space 3C into itself. A subspace W of 3C is said to be wander­
ing with respect to this semigroup, iff 

Sm(W) J. Sn(W) when m ^ n. 

Now let (St, / = r ea l^0 ) be a semigroup of isometries, which to avoid 
pathologies we assume to be strongly continuous. When can a sub-
space W of 3C be said to wander with respect to this semigroup? 
Again there is no obvious answer, and we could dismiss the question 
as being meaningless. But if we pursue this question with the attitude 
we took to the random walk, we find that canonically attached to the 
operator-valued point-function St is an operator-valued measure 
P(flf6] and that in a very natural sense W may be said to wander, iff 

T(aM(W) ± T(Cld](W) whenever (a, b] || (c, d]. 
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In fact, 

T(aM = (1/V2) (Sb "Sa- f Std^ . 

We can show that (l/V(&-"0))?\a,bi is an isometry when restricted 
to W, so that 

(5) T(a, b]*T(a, b] =» (b - a ) / on TF. 

We therefore call T a quasi-isometric measure. The similarity between 
(5) and the result (4), rescaled to make the constant 1, is far from 
fortuitous. 

1.4. HISTORICAL AND BIBLIOGRAPHICAL REMARKS. The idea of an 
infinite-dimensional vector-valued measure can be traced back at 
least to 1909 when Hellinger in his fundamental paper [15, §5] intro­
duced the idea of eigendifferential, and what subsequently has been 
called an eigenpacket or more often wave packet, for the study of dif­
ferential operators with a continuous spectrum. The eigenpacket is 
in essence a Hubert space-valued measure, cf. [16, 10.4]. The first 
systematic treatment of such measures occurs, however, in Wiener's 
epoch-making paper [49] of 1923 on the mathematical analysis of the 
Einstein-Smoluchovski theory of the Brownian movement. In this 
originated the concept of a process of independent increments and 
the related notions of random measure and stochastic integration, 
cf. [10, p. 426]. In the late 20's spectral (projection-valued) measures 
were introduced by Stone and von Neumann for the study of linear 
operators on Hubert spaces. While this important advance led to 
greater use of Hilbert space-valued measures, it focussed attention 
solely on the bounded ones defined on cr-algebras. As a result, the 
important class of vector-valued measures which are governed by 
Haar measure and are consequently unbounded (cf. 1.2(2) & 1.3(4) 
et seq.), did not receive adequate attention. In recent years the study 
of multivariate stochastic processes has led to the consideration of 
orthogonally scattered measures in inflated Hilbert spaces 3C3, [34], 
[44], [29]. Also Loève, Cramer, Rosanov and others interested in 
stochastic processes have considered nonorthogonally scattered mea­
sures with values in 3C, [23], [9], [42]. 

The close connection between probability theory and random 
measures on the one hand and L2-transform theory and harmonic 
analysis on the other is clearly discernible from the writings of 
Wiener, Bochner and others [50], [39], [5]. But the observation tha t 
the underlying measure and integration theories are identical in the 
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two situations and that vector-valued measures can therefore be used 
to systematize and simplify L2-transform theory seems to be due to 
the writer [30 ], [32], The writer also introduced the notion of quasi-
isometric measure in the course of finding a Wold Decomposition for 
continuous parameter isometric semigroups [28], and he observed 
that these measures have a wider utility [31 ]. This work was stimu­
lated by the time-domain techniques developed jointly with J. B. 
Robertson in [33], These observations will be amplified in the sequel. 

We should also mention some work on an ancillary problem that 
confronts us. Let CL(W', W) be the Banach space of continuous linear 
operators on a Hubert space W' to a Hubert space W, and let M be a 
countably additive, W-to-W, nonnegative hermitian operator-valued 
measure on a cr-ring (B over a space A. The problem is to define the 
space 

£ 2 - L2(A, (B, M\ CL(W', W)) 

in such a way that it becomes a Hubert space. In short, we need the 
operatorial generalization of the classical Riesz-Fischer Theorem for 
L2(R). This ancillary problem was settled by Rosenberg [44] and 
Rosanov [43] for finite-dimensional W' and W. The case when W = C 
and W is infinite-dimensional is discussed by Kuroda [2l] and the 
case W' ~W where both are infinite-dimensional by Mandraker and 
Salehi in an unpublished report [26]. 

The work described in the last three paragraphs has a markedly 
Hilbertian flavor. A related development in a non-Hilbertian context 
is the theory of vector-valued measures and integration due to Bartle, 
Dunford and Schwartz, which is presented in volume I of their book 
[ l l ],5 and the vectorial extension of the classical duality theorems for 
C(X) and LP1 due to I. Singer [46], [47], Bartle, Dunford and Schwartz 
[2], Bogdanowicz [ó], Mizel and Sudaresan [36] and others. We 
shall not be concerned with this important work in the present paper. 
In the future, when more is known concerning basic measures in 
Banach spaces, it may become possible to embrace this work along 
with ours in a single general theory. I t may also become possible to 
secure an even greater unification by considering vector-valued and 
operator-valued measures on abstract Boolean ô-rings instead of 
S-rings of subsets of a given set, a suggestion for which we are grateful 
to Professor Garrett Birkhoff. 

1.5. T H E SCOPE OF THIS PAPER. Part I is devoted to orthogonally 

5 Their theory so far pertains to bounded measures defined on cr-algebras, and so 
excludes most of the measures we need. 
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scattered measures. In §2 we recapitulate the central aspects of the 
theory, developed more fully in [30], which are needed for the appli­
cations. In §3 we suggest a new orthogonally-scattered measure-
theoretic procedure to deal with unitary transforms on Z/2-spaces in 
an explicit way, and illustrate it by application to the Hilbert trans­
form (§4) and the Watson transform (§5). In §6 we allude to the 
explicit formulation of the general Fourier-Plancherel transform al­
ready given fully in [32]. 

In Part II we turn to quasi-isometric operator-valued measures. 
In §7 we explain how such measures take over the role of orthogonally 
scattered measures in situations involving Hilbert spaces in which a 
certain multiplicity exceeds 1. We then study such measures in §8. 
§9 is devoted to the ancillary question of the definition and complete­
ness of the space L2(A, (B, M\ W) of functions on A to a Hilbert space 
W which are "square-integrable" with respect to a W-to-W, non-
negative, hermitian operator-valued measure M. Integration with 
respect to quasi-isometric measures over arbitrary spaces A is treated 
in detail in §10. The important special case in which A is a locally 
compact semigroup or group, and the ensuing concept of "stationar-
ity" are taken up in §11. 

§§12-15 are devoted to applications of quasi-isometric measures. 
In §12 we propose a new quasi-isometric measure-theoretic procedure 
to deal with representations of Hilbert spaces in an explicit way. 
We illustrate this procedure by application to vectorial Fourier-
Plancherel theory (§13), spectral representation theorems (§14), 
Cooper's Theorem on the isometric representations of the semigroup 
[0, oo), and the analysis of linear, stationary, causal systems (§15). 
In §16 we refer to other aspects of our theory and to some unfinished 
work on the explicit formulation of Mackey's Imprimitivity Theorem, 
and of theorems on perturbations and pseudo-eigenfunction expan­
sions. 

PART I. C.A.O.S. MEASURES 

2. C.a.o.s. measures and integration 

The theory of Hilbert-space valued, orthogonally scattered mea­
sures has been expounded rather fully in [30]. I t will therefore suffice 
to recall only the definition and the few fundamental results needed 
to exemplify the role of such measures as substitutes for orthogonal 
bases, and as a foundation for the treatment of unitary transforms 
on L2-spaces. 

2.1. DEFINITION. Let 3C be a complex Hilbert space. We say that £ is 
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an ^-valued, countably additive, orthogonally scattered (c.a.o.s.) 
measure over (A, (B, /A), iff 

(i) (B is a a-ring over a space A, 
(ii) /x is a nonnegative, a-finite, c.a. measure on (B, 
(iii) £ is an 3C-valued function on the h-ring* 

(BM = {B:B G (B &/*(£) < «>}, 

V i , B G (B,, ({(il), £(#)) = /*U H 5) . 

ju is ca//e<2 the nonnegative measure of Ç. 

I t follows trivially that if £ is an 3C-valued, c.a.o.s. measure over 
(A, (B, ju), then £ is countably additive and orthogonally scattered, i.e. 

co 

V* è 1, £*GCB„, ^ a r e | | 7 & U Bk G (BM 
l 

CO / °° \ 

=» 5Z £(-£*) converges unconditionally to £ ( U J5fc 1 ; 

4 , £ G (BM &i4||5 =» £(i4) ± £(5). 

The converse also holds, [30, 1.8]. This justifies our use of the appel­
lation "c.a.o.s." in 2.1. 

2.2. DEFINITION. Let £ be an ^-valued, c.a.o.s. measure over (A, (B, IJL). 

Then 

(a)8 ®{£((BM)}, i.e. <SU(4):4G<B,} 

is called the subspace of JE, and denoted by S$. 
(b) In case Ŝ  = JC we call £ an K-basic, c.a.o.s. measure (for now 

the "differentials" of £ act like a basis f or 3C). 

Barring trivial cases c.a.o.s. measures £ have infinite total varia­
tion; indeed for many £, |£ | ( j?)=co whenever fx(B)>0. Also, al­
though obviously £ is absolutely continuous relative to its nonnega­
tive measure ju, there is in general no 3C-valued Radon-Nikod^m 
derivative d^/djx, [30,4.4]. Despite these complications, the theory is 
very simple, thanks to the strong nexus between £ and /i, viz. 
l€(B)l»=M(g), V£€(BM. 

8 So-called because it is closed under countable intersections. The symbol ~a 
means "equals by definition." 

7 The symbol || means disjoint. 
8 VAQ3C, <5(A) =d the (least, closed, linear) subspace spanned by A. 
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There is an elegant concept of integration of functions <£E 
L2(A, (B, JU) with respect to an 3C-valued, c.a.o.s. measure £ over 
(A, (B, jit). The integral is first defined for (BM-simple functions </>, and 
then by a limiting process for any <£ in L2(A, (B, ju), [30, 5.4, 5.6]. The 
crucial property of the integral is given in the following theorem 
[30, 5.9]: 

2.3. ISOMORPHISM THEOREM. Let § be an Wl-valued, c.a.o.s. measure 
over (A, (B, ju). Then the correspondence 

S: $ f *(X)£(dA) 
•/ A 

is aw isometry on L2(A, (B, /x) <wta S$ÇI3C. Thus, every such £ carries 
with it two Hilbert spaces, S$ and L2(A, (B, jut), isomorphic under the 
natural correspondence S. 

Theorem 2.3 shows, for instance, that 

( ƒ *(A)£(<B0, ƒ lKX)E(«0) = (*, *), J ƒ *(X)^5M(JX), 
(2.4) 

f *(X)*(dX) 12 - | * IM 7 f I *(X) | V(<*A). 

Let £ be an 3C-valued, c.a.o.s. measure over (A, (B, jtz) and P$ be 
the projection on 3C onto S$. Then by Thm.2.3 to each x in 3C cor­
responds a function ^ in L2(A, (B, /x) such that 

A W = f *,(X)*(<*X). 
• / A 

This $3 can be expressed in terms of x and 5 by a Radon-Nikod^m 
derivative as shown in [30, 5.10]; but for the purposes of this paper 
it will suffice to give only the more cogent form this result takes 
when A is a Besicovitch space with respect to /x (2.6 below). We first 
define this notion: 

2.5. DEFINITION. Let (i) A. be a Hausdorff space, 
(ii) (S^ be a a-ring over A which includes the family of Borel sets, 
(iii) fi be a nonnegative, a-finite, c.a., Borel measure9 on (B. 

We call (A, (B) a Besicovitch space with respect to y, iff A has a 
special family of precompact open neighborhoods N\ of points X in A 
having the following property: V complex-valued c.a. measures v such that 
the Hahn extension of the total variation \v\ is a Borel measure on (B, 

9 I.e. such that M ( 0 < °°, V compact CQA 
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Dv . v(Nx) 
(X) = lim exists a.e. (/z) on a(y) C A, 

Du d #x-x M(iVx) 

where a(ji) is the spectrum of /x. Dv/Dfj, is called the Besicovitch deriva­
tive of v with respect to #. 

Let v = Va+Vbf va<KfJLy be the Lebesgue decomposition of v relative to 
/x. Writing dva/dfi for the Radon-Nikod^m derivative, it follows from 
Besicovitch's basic theorem [3] that 

Dv/Dfi = a version of dva/dfi. 

As one may surmise from our remarks after 2.2, DC/Dp does not 
exist in general for a c.a.o.s. measure £ over (A, (B, /x), [30, 6.5]. 
Nevertheless, we have the following theorem [30, 6.7]: 

2.6. PROJECTION THEOREM (FOR BESICOVITCH A). Let (i) £ be an 

^-valued measure over (A, (B, /x) where (A, (E) is a Besicovitch space 
with respect to (the a-finite, Borel measure) /x; 

(ii) P$ be the projection on 3C onto S$. Then 

VaGOe, P*(*) = f lim ( * , i ^ W x ) , [ n i x , 

/fee integrand being always a function in L2(A, (B, /x). 

The last limit can be brought inside the inner product when and 
only when M { M >0> i«e. {X} is an atom of jtx, as shown in [30, 6.6]. 
Let us compare the last equation with the familiar formula 

(i) v* e x, P&) = £ (x, -j^\ &, 

where (£n)T is any orthogonal sequence in 3C, and P$ is the projection 
onto the subspace spanned by the £n, » ^ 1 . Clearly the equation in 
2.6 is a generalization of (1), and reduces to (1) when the measure £ 
is purely atomic and concentrated on the set of positive integers. 
Thus, Thm.2.6 may well be regarded as a generalized Pythagorean 
Theorem. 

In the applications we are usually concerned with the case in which 
the Hubert space 3C consists of complex-valued functions which are 
L2 over a measure space (Q, #, v). A slight modification of our nota­
tion is expedient in this case: 

2.7. NOTATION. Let £ be an L2(Q, #, p)-valued, c.a.o.s. measure 
over (A, (B, /x), cf. 2.1. Then since the value of £ a t B, where J3£<B„, 
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is a function on Q, we shall denote this value by £# and not by £(i3). 
We can then write equations such as 

VA, Be®», b(<*)h(<*Hdu) = ou, h), = *{A n B). 

Our integral will be written / A 0 ( X ) ^ X and not /A<£(X)£(^\ ) . 

A distinctive feature of the L2 spaces is their possession of a basic 
c.a.o.s. measure distinguishable from all others by its simplicity 
[30, 9.3]: 

2.8. TRIVIALITY. Let (i) v be a nonnegative, a-finite, c.a. measure on 
a a-ring $ over Q, so that $ — a($v) where 

$v j {E: EE$ &v(p)<<*>\, 

and cr($v) denotes the cr-ring generated by %v; 
(ii) VEGSv, %E be the indicator-function of E. Then xis a L2(0, $, v)-

basic, c.a.o.s. measure over (0, 3r, v). Moreover, 

V/G£i(0,SF,v), ƒ = f/(«)x*.. 
•J o 

We shall call the x given in 2.8 the indicator-measure basis for 
L2(Q, #, v). I t is the obvious analogue of the familiar basis: (1, 0, 
0, • • • ), (0, 1, 0, • • • ), • • • for the space fe. 

In 1933 Watson [48] studied the general transforms on L2[0, <x>) 
which have since been given his name. In 1934 Bochner [4] simplified 
and extended Watson's treatment, retaining however the use of 
point-functions. The following is the c.a.o.s. measure-theoretic 
reformulation of his result for any L2 spaces [30, 9.7(a)] : 

2.9. DUALITY THEOREM (BOCHNER). Let (i) for i~ 1, 2, ju* be a non-

negative, a-finite, c.a. measure on a a-ring OB» over a space A„ and 

(BMi = {B: B G (B< & n(B) < » } ; 

(ii) 3Ct = Lt(Ai, <Ri9 in)', 
a 

(iii) rj be a ^-valued, c.a.o.s. measure over (Ai, (Bi, Hi), ^ be a 3Ci-
valued, c.a.o.s. measure over (A2, (B2, /*2); 

(iv) V.BiG(BMl & V^2G(BM2, (XBV ?«1)«l=(i?Bl, X*«W 
Then S$ = 3Ci, S„ = 3C2; i.e. £ and rj are 3Q,i-basic and 3Zi-basic c.a.o.s. mea­
sures, respectively. 

This theorem yields the following corollary [30, 9.5, 9.6, 9.7(b)]: 
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2.10. COROLLARY. Let (i)-(iv) be as in 2.9, and let 

(v) V/e3Ci , V(f)7 f f(\i)v*xv 

Then (a) V is a unitary operator on 5Ci onto 3C2, 

(b) Vg G 3C2, V*(g) = f *(X0fcxr 
J A 2 

The following result is a converse of 2.9 and 2.10: 

2.11. COROLLARY. Let (i) and (ii) be as in 2.9 and let 

(iii) F fo a unitary operator on 3Ci onto 3C2, 

(iv) VBi G (BM1 & VJ52 G CBW ^ = F(X 5 l) & U == F*(Xs2). 
a a 

jH&ew the conditions 2.9 (iii) and (iv) hold. 

Finally, we must mention the case in which A is a subinterval of R. 
A natural correspondence then exists between set-functions and 
point-functions, concerning which there are two useful results: 

2.12. LEMMA. Let (i) A be any subinterval of R with left endpoint a,10 

(ii) x(') be a function on A. to SC such that in case a ^ A , lim^a-f x(t) 
eoci/o LS, 

(iii) f*(a), a G A, 
1 7 \ lim x(t), a $ A. 

Then the following conditions are equivalent: 
(a) x(') has orthogonal increments, i.e. 

Va, b, c, d G A, a < b S c < d=> %{b) — x(a) JL x(d) — x(c) 

OS) 3/(-) onABVs, *GA, (*($)- / , « ( 0 - 0 =/(min{s, *}). 

We omit the easy proof of this result. On taking s = £ in (j8), we see 
that actually 

It also easily follows, cf. [30, 8.2], that when (a) or (/3) holds, ƒ is 
monotone increasing on A and x(-) has left- and right-limits x(t±), 
V^GA. On combining 2.12 with the theorem [30, 8.6] that a function 
with orthogonal increments generates a c.a.o.s. measure, we get the 
following theorem: 

10 a need not be in A and may equal — <». 
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2.13. EXTENSION THEOREM. Let the conditions 2.12(i)-(iii) and (a) 
or (j3) hold, and let 

is a Borel subset of A}. 

Then 3 a unique nonnegative, a-finite, c.a. measure JJL on (B and 3 a 
unique X-valued c.a.o.s. measure £ over (A, <B, ju) such that 

V(a, 6] C A, M(a, 6] - ƒ(&+) - f(a+) & £(a, 6] = *(J+) - x(a+). 

3. A new approach to L2-transform theory 

Hitherto the Fourier-Plancherel, Hankel, Hubert and other uni­
tary transforms on L2-spaces have been defined by improper or singu­
lar integrals (l.i.m.'s, Cauchy p.v.'s, (d/dx)f, etc.). Now let V be any 
unitary transformation on one L2 space onto another L2 space. Then 
by 2.11 F(x(-))> V*(X('))i where %(•) are indicator measures over the 
two L2 spaces, are basic c.a.o.s. measures related as in the Duality 
Thm.2.9. Hence by 2.10 all such transformations are definable by 
(proper) integrals of L2-valued c.a.o.s. measures. This suggests a new 
approach to L2 transform theory, concordant with the view expressed 
in 1.2, based on the following procedure: 

3.1. PROCEDURE, (i) From the data of the problem define a pair of 
Lî-valued set-functions £, rj; 

(ii) Show that they satisfy the conditions of the Duality Thm.2.9, and 
hence are basic c.a.o.s. measures', {Cor.2.10 then ensures that the resulting 
transformation V is unitary.) 

(iii) Use the Projection Thm.2.6 to express V(J) as an improper or 
singular integral, and so identify V or F* with the classical transform. 

This approach has several advantages. (1) I t is shorter than the 
traditional one in which there is no appeal to a general theory, and 
consequently the same sort of reasoning has to be repeated in a special 
context in each instance. (2) I t permits the exploitation of the theory 
of c.a.o.s. measured integration (e.g. of theorems on indefinite inte­
gration, substitution, integration by parts, etc., cf. [30, §§5-9], to 
find new connections between different transforms, and so secure a 
better organization of the theory. (3) I t brings L2-transform theory 
closer to certain parts of probability theory, the only difference that 
remains between the two being that in the latter our measures have 
values in 

L2(Q, <r-alg., Probab. meas.), 

whereas in the former their values are in 
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L2(l.c.a. group or part, Borel family, Haar meas.). 

We shall illustrate the new approach by considering the Hubert, 
Watson and Fourier-Plancherel transforms (§§4-6). 

4. The Hubert transform 

Following Procedure 3.1, we start by defining a pair of set-functions 
€.!»: 

(4.1) 
- | (o.6j (X) = 1?(«,&](X) = — log 

b-\\ 

a — X 

where a, b>\ £ R & a < b & a 9e X 9e b. 

Now an elementary analytical argument shows that 

Vh,kER, l o g | - + A | - l o g | . + * | eL2(R). 

I t follows that 

(1) V(a, b] C R, ViaM E L2(R), 

and a routine calculation yields its L2-norm : 

i | 2 A c™ f 11 -+-x|x2 

(4.2) I rjia,h] 12 = — (b - a), where A == I ( log ) d\. 
T

 d J o \ 11 —XI / 
By (4.1) and (1), rj is a L2(R)-valued, finitely additive measure on the 
prering (P of bounded subintervals (a, b] of JR, and by (4.2) its non-
negative measure JU(-) =const. Leb., and is therefore c.a. But it is a 
triviality that a 3C-valued, f.a. measure rj on (P, for which | ĉ-> I § is 
c.a. and (rjA, rjs)E:R is c.a.o.s. on (P. Thus, 77 is a L2(i;2)-valued c.a.o.s. 
measure on (P and its nonnegative measure is Lebesgue. Using the 
same letter for the Hahn extension to the Borel family (B, it follows, 
cf. [30, 2.5], tha t 

(2) 
/ A \ 

£, rj are L2(R)-valued, c.a.o.s. tneass. over ( R, (B, — Leb. J. 

To complete step (ii) of Procedure 3.1, we next check whether 
condition (iv) of the Duality Thm.2.9 is satisfied. For J3i= (a, b] and 
B2 = (Cj d] this condition is 

rb 1 \d - X I rd 1 
- l o g - U = -

« / 0 7T I C — A I * / c 7T 

•log 
I a — X 

and its truth follows immediately from the triviality11 

d\, 

11 Which holds unrestrictedly if we set 0°=dl. 
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log \d\ = log<M — •—} . 

The condition 2.9(iv) thus holds on the prering (P and thence by 
Hahn extension on the ô-ring (Bo. From 2.9 we thus obtain 

4.3. THEOREM (CAUCHY-HILBERT BASIC MEASURE). The Hahn-
extensions of the set-functions £, 77 defined in (4.1) are L2(R)-basiCy 
c.a.o.s. measures over (R, (B, (A/w) Leb.), where the constant A is as 
in (4.2). 

I t follows from Cor.2.10 that 

ƒ 00 

f(t)vdt defines a unitary operator V on L%{R) onto 

itself 
(4.4) 

& / = F * ( g ) = f%(X)6a. 
• ' - C O 

To identify this V with the Hubert transform as denned classically, 
we appeal of course to the Projection Thm.2.6 (step (iii) of Procedure 
3.1). From the second equation in (4.4) and Thm.2.6 

g(\) = lim (ƒ, — £(x-/u+/>) ) 
n-*o \ Ih / 

I f 0 0 |X - h - t\ 
- U r n — I / « l o g — — -\di, by (4.1) 

,limi±(r-\r)...+±r\..\ 
= lim {i + I I } , say. 

We now apply Lebesgue's theorems on convergence and differentia­
tion in a straightforward way, and show that 

lim I I = 0, 

and 
•A-A /»«>\ ƒ(/) / • « ƒ( , ) lim I = lim ( f + f \-^~dt = P.V. f -^~ dt. 

h-*0 7»-K) \ J _oo J \+h/ / — X d J ^ t —- X 

Hence, 
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*(X) = (Vf)(\) = P.V. C\f(t)/(t - X))*, a.e.(Leb.). 
J -oo 

Thus V is indeed the Hubert transform. 

5. The Watson transform 

In his important paper [48] Watson set out to answer the following 
question. Let 

w be a complex-valued,12 Borel measurable function 

on [0, *>) 3 w ( . ) / I ( 0 G L2[0, ^ ) . 1 3 

What further conditions must w(-) satisfy in order that it yield a 
transformation V such that 

(i) V is unitary on Lâ[0, oo) onto itself 

(ii) g — V{f) is such that 

dp™ w(xy) 
(5.2) g(x) = — I f(y)dy, a.e. on [0, oo), 

dxJo y 
(iii) the relation between g and f is reciprocal, i.e. 

d r 0 0 w{xy) 
f(x) = — I g(y)dy, a.e. on [0, oo). 

dxJç y 
Watson obtained the following remarkable answer: 

5.3. WATSON'S THEOREM. The n.&s.c. for the existence of a transfor­
mation V satisfying the conditions in (5.2) is that 

ƒ• °° w(ay)w(yb) . . 

— ^ — — *y = min{a, b). 
o V2 

PROOF (FOLLOWING PROCEDURE 3.1). For notational simplicity we 
shall suppose that w(0) = 0 . Define for & > a ^ 0 , 

w(b\) — w(a\) 
(5.4) IMQO 7 «to.bi(X) = > X > 0, 

d d x 
and 

(1) V / G [ 0 , oo), X(t) = «,(*.)/ƒ(-). 
d 

l î Actually, Watson took w to be real-valued. 
18 !(•) is the identity function: I(#) = *, x^O. 
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Then clearly X(-) is a function on [0, oo) to L2 [0, oo) and 

(2) £(«,&] - X(b) - X(a), 0^a<b. 

The condition (5.3.1) tells us that 

(3) (X(a), X(b)) = min {a, b}, 0 ^ a < b, 

i.e. tha t the condition 2.12(/3) holds with Z = w(0)=0 and f(t)=t, 
t^O. Thisƒ(•) is continuous on [0, oo) and so therefore i sX( - ) . Hence 
assuming that (5.3.1) holds, it follows at once from Thm.2.13 that 

(5.5) £, 7} are Lz[0} &>)-valued c.a.o.s. meass. over ([0, oo), (B, Leb.) 

where (B denotes the <r-ring of Borel subsets of [0, oo ), and £, r] denote 
the Hahn extensions of the measures in (5.4). 

To complete step (ii) of Procedure 3.1, we next check whether the 
condition (iv) of the Duality Thm.2.9 is met. For 5 i = ( a , b] and 
B2— (c, d]y this condition becomes 

w(d\) — w(c\) rd w(b\) — w(aX) 
JX = I d\. 

X 
/

•* w(d\) — w(c\) r 

x ~ J. 
Now, 

LHS = I d\ — I d\ — I d\+ I ^X. 
•̂  0 X V Q X * ^ O X «J 0 A 

On substituting \ = bu/d, au/d, bu/cy au/c in the four integrals re­
spectively, we get four other integrals which when combined ob­
viously yield the RHS. Thus the condition 2.9(iv) holds on the pre-
ring (P, and thence by extension on the S-ring of Borel sets of finite 
Lebesgue measure. From Thm.2.9 and Cor.2.10, we now conclude 
that 

(5.6) £, rj are L2[0, 00)-basic c.a.o.s. meass. over ([0, °o), (B, Leb.) 

and that 

ƒ» 00 

f(t)rjdt defines a unitary operator on L2[0, 00) onto 
0 

(5.7) itself, 

& f=V*(g) = f%(X)fax. 

Finally, we come to step (iii) of Procedure 3.1. From the second 
eqn. in (5.7) and the Projection Thm.2.6, 
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g(X) = lim (ƒ, — J(X - A, X + h] ) a.e. (Leb) on [0, <*>) 

;{(X + h)t] - w{{\ - &)*} 
-Km f"/(0 

ft-+0 «/ o 

ZI->Q 2A ( J 0 * J o * / 

d f00 üf(X0 
= — j ƒ(/) dt, a.e. (Leb.) on [0, <*>). 

d\Jo t 
Similarly from the first eqn. in (5.7) and the Projection Thm.2.6, 

d f °° w(tx) 

o 

We have thus established that 

(5.3.1) => (5.2), under the hyp. (5.1). 

d r™ w(<\) 
ƒ(') = — *(X) — — d\ a.e. (Leb.) on [0, oo). 

dt J o X 

To prove the converse implication, let (5.2) hold, and take ƒ=X(o,a] 
in (5.2)(ii).Then 

d (*a w(xy) 
V(x(o,a])(oc) = — I dy, a.e. (Leb.), 

dx J 0 y 
a /•* w(at) 

= — I öf/, (put J = xy/a), 
dxJ0 t 
w(ax) 

x 

by the Lebesgue differentiation theorem. Thus, 

a.e. (Leb.) 

ƒ" 
J o 

w(a\)w(b\) 
d\^(V(xio,a]),V(x(oM)) 

X2 

= (xco.a],X(o.5]) by (5.2)(i) 

= Leb.((0, a] C\ (0, b]) by (2.8) 

= min{a, b}. 

This completes the proof of the converse. 

Disregarding aspects of Watson's theorem which are subsumed 
under the results of §2, and therefore now redundant from our stand­
point, we may describe his contribution as the discovery of the follow­
ing remarkable result: 
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5.8. THEOREM (WATSON'S CONDITION FOR BASIC MEASURE). Let 

(i) w(<) be a complex-valued, B or el-measurable function on [0, oo) 
such that w( • ) / / ( • ) £ L 2 [0, oo ) and w(0) = 0, 

(ii) forO ^ a < b, $<«,*] (X) = (w(b\) - w(a\))/\, X > 0 . 
d 

Then the Hahn extension of £ is a Z^fO, <x>)-basic c.a.o.s. measure over 
([0, «>),<$>, Leb.), iff 

J'00 w(a\)w(b\) f , 
d\ = min{a, b\. 

o X2 

6. The Fourier-Plancherel transform 

As Bochner [4] has shown, a slightly amended form of Watson's 
Theorem 5.3 works for L2 [a, b] for any a, b such that — o o g ^ < & g o o . 
Now take 

(6.1) (a, b) = R, and w(X) = (e* - 1)/X, X ̂  0, w(0) = 0. 

Then, as shown e.g. in [41, p. 294], w satisfies the amended condition 
corresponding to (5.3.1), and so yields a unitary operator F on L%(R) 
onto itself, which is seen to be the F P transform. 

Alternatively, we can develop FP theory on a c.a.o.s. measure-
theoretic basis following Procedure 3.1. This is clear for the group R, 
since we have only to carry out the demonstration given in §5 with 
slight changes, taking w to be the function given in (6.1). The cor­
responding treatment for an arbitrary locally compact, abelian (l.c.a.) 
group, which is much harder, has been given in detail in [32]. Here 
we need indicate only its very salient features. 

Let 3C = L2(X, (B, p), where X is an (additive) l.c.a. group with 
Borel family (B and (regular) Haar measure /x, and let 3C = L<L(X, (B, #), 
where X is the (multiplicative) character group of X with Borel 
family (B and dual Haar measure ju.14 Let (Bo, (Bo denote the ô-rings 
consisting of Borel sets of finite Haar measure, and [x, a] stand for 
a(x), where x £ I , a £ X . Following Procedure 3.1, we first define two 
set functions £, rj : 

VB G (Bo & Vx G X, &(*) = f [x, a]n(da), 
d J % 

(6.2) 

VB G «o & Va G &, i?«(a) = f [x, a]»(dx). 

14 For the definition of the dual Haar measure jî of the Haar measure /« see [32, 
3.17]. 
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To carry out step (ii) of Procedure 3.1, we prove that £, rj are 3C-valued 
and 3C-valued c.a.o.s. measures over (X, (B, ju) and (X, (B, /x), re­
spectively, satisfying the condition (iv) of the Duality Thm.2.9: 

(6.3) VJ5 G (Bo & VJ5 G (Bo, (xa, ÉS)sc = fe> xâ)«-

This is a rather intricate matter for which we have to invoke the 
Pontryagin Duality Theorem as well as the Fourier Inversion The­
orem for Li(X, (B, jit). We then get the following crucial result [32, 
4.8]: 

6.4. THEOREM (FOURIER-PLANCHEREL BASIC MEASURES). Let £, rj 

be as in (6.2). Then 

(a) £ is a 30,-basic, c.a.o.s. measure over (X, (B, jft), 
(b) rj is a 3Q,-basicy c.a.o.s. measure over (X, (B, jx). 

This theorem is a generalization of the well-known result that the 
characters of the group X provide an orthonormal basis for the space 
3C = L2(X, (B, /A) when X is compact, cf. [38, p. 424]. What Thm.6.4 
says is that when X is locally compact it is the "character packets" 
%B, #G<Bo, defined in (6.2), which provide a basic c.a.o.s. measure 
for 3C. 

Thm.6.4 allows us of course to define the FP transform V on 3C to 
3C explicitly by the formula 

(6.5) V/G3C, f=V(f) = f ƒ(*)„*. 

I t follows from Cor.2.10, that F is a unitary operator on 3C onto 3C, 
and that 

(6.6) V^ G &, f = 7*(g) = (g{a)£da. 
d J x 

From 6.2, 6.4, (6.5) we can deduce all the known results of FP theory. 
For groups which are Besicovitch spaces with respect to their Haar 
measures, cf. [l2, §2], we can also get some new results from our Pro­
jection Thm.2.6, cf. [32, §5]. 

For nonabelian, locally compact groups, preliminary investigations 
by D. J. Patil and E. Schwandt suggest that a c.a.o.s. measure-the­
oretic treatment will work for the F P theory at least in the unimodu-
lar case. Because of the breakdown of duality, only the c.a.o.s. mea­
sure r] seems to survive, and its values now lie in the tensor product of 
certain L2-spaces, i.e. in a space of Hilbert-Schmidt operators. 

To recover the F P theory for the group JR from the general theory, 
we have only to note that R is isomorphic to, and therefore identifi-
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able with JR, and that a convenient choice of Haar measure is 
(l/v /27r)(Lebesgue measure) rather than Lebesgue measure itself, 
as it is the former which is self-dual. With this choice of Haar mea­
sure, the definition (6.2) of the F P measures £, rj reduces to 

(6.7) V£ G (Bo & V* G R, {B(0 = —-- f e^d\ = «*(*), 
d V Z7T t / j5 d 

and the entire theory can be built on this basis. 

PART II . C.A.Q.I. MEASURES 

7. On situations with multiplicity exceeding 1 

In the situation considered in Par t I a certain underlying Hubert 
space W happens to be C There are analytic situations in which the 
corresponding spaces W have dimension q > 1. As instances we may 
cite the Fourier-Plancherel theory for functions with values in a Hu­
bert space W, and the representation theorems of Stone and Cooper, 
cf. 1.1. q turns out to be the multiplicity of a certain associated spec­
tral measure ; therefore we speak of it as a multiplicity. 

To deal with these uq > 1 situations" in the same explicit manner 
as the aq = 1 situations" of Par t I, we have to take instead of our re­
valued, c.a.o.s. measure a W-to-30,, c.a.q.i. measure having the crucial 
property of quasi-isometry (q.i.), which we shall define in §8. Just as 
the c.a.o.s. measure £ has attached to it a nonnegative real-valued 
measure /z, so the c.a.q.i. measure T(-) has attached to it a W-to-W, 
nonnegative, hermitian operator-valued measure M(-). In the causal 
situations considered so far in [28], [31 ], M(-)=IJL(-)I} where ju(-) 
is a nonnegative, real-valued measure and I is the identity operator 
on W. But recently we have felt the need to admit other less-trivial 
kinds of W-to-W, nonnegative, hermitian operator-valued measures 
M as well, in order to reach other (noncausal) situations, and to 
secure a wider unification.16 

Just as integration with respect to c.a.o.s. measures makes explicit 
an isomorphism 

2 : L 2 ( A , ( B , M ; C ) - - » 3 C , 

15 In fact, problems have already emerged which suggest that even this wider 
framework is inadequate, and that we should take instead of W a tensor product 
W' o W, where W' is another Hubert space, keeping M(') as a W-to-W, nonnegative, 
hermitian operator-valued measure. But in this paper we shall only consider W, i.e. 
from the more general standpoint consider the specialization Wr = C. 
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so integration with respect to c.a.q.i. measures makes explicit an 
isomorphism 

S: L2(A,<B,M; W0->3C. 

A preliminary question is as to when L2(A, (B, M; W) is a Hubert 
space. We shall comment on this in §9, and consider integration in 
§10. 

8. T^-to-tfC c.a.q.i. measures 

In this section 

(i) (P is a prering over an arbitrary set A; 
(8.1) 

(ii) W & 5C are Hilbert spaces over C. 

Our fundamental definition is: 

8.2. DEFINITION. T(-)is called a W-to-3C, countably additive, quasi-
isometric (c.a.q.i.) measure over (A, (P, M), iff 

(i) M(') is a W-to-W, nonnegative, hermitianu operator-valued 
measure on (P, which is c.a. under the strong operator topology, 

(ii) V4G(P, T(A) is a continuous linear operator on W to 3C, 
(iii) V^,^G(P, T(B)*T(A) = M(AnB). 

We call M(') the nonnegative hermitian measure of T ( ) . 

An equivalent formulation of the condition 8.2(iii) is obviously 

Wt, BE (P& Vw, w' G W, 

(T(A)(w), T{B)(W'))K = (M(A r\ B)(w)9 w')w. 

In this the RHS could of course be written in the symmetric form 

(VM(A r\ B)(w), VM(A H B)(v/))w. 

Thus we have 

I T(A) | i = | M(A) \B, | T(A)(w) £. = | VAT(il)(«0 k , 

i G (P, ̂  G 3C, 

| • | By J - j oc, | • | w being the Banach-norm, the norm in 3C and the 
norm in W. Hence T(A) and M (A) have the same null space in W, 
andof course i k T ( - ) « ^ ( ' ) « ^ r ( - ) . But T(-) need not be an indefinite 

I.e. continuous, linear and self adjoint. 
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integral of M(-), nor need its total variation measure | T\ (•) be finite 
on sets in (P. In case M(•) =IJL(-)I1 where / is the identity operator on 
W, the equation in 8.2 (iii) reduces to 

(T(A)(w), T(B)(W'))K = p{A C\ B)-(w, w')Wy 

and we so recover the c.a.q.i. measures considered previously in 
[28, §4], [31, §3]. 

The connection between c.a.q.i. and c.a.o.s. measures is easy to 
describe : 

8.5. TRIVIALITY. Let (i) T be a W-fo-3C, c.a.q.i. measure over (À, (P, 
M), 

(ii) Vw,w'EW,U') =d r ( 0 ( w ) , /*»«'(•) =*(M(-)(w),w'). 
Then Vw, w'ÇzW, 

(a) £«,(•) is a 30,-valued, c.a.o.s. measure on (P with nonnegative 
measure fiww (cf. [30, 1.2]); 

(b) £»(•)) ?«>'(') are biorthogonal measures with cross-covariance 
measure /xwt0', i.e. 

V4, B 6 ( P , ( k U ) , £*'(5))ac = À W ( 4 H 5) . 

PROOF. The last equation is obvious. On setting w' — w and using 
our Equivalence Thm. [30, 1.8] we get (a). 

The following lemma gives some properties of the measure T(-)\ 
in particular it explains our choice of the letter W and justifies the 
appellation "c.a.q.i." used in 8.2: 

8.6. LEMMA. Let T be a W-to-30,, c.a.q.i. measure over (A, (p, M). 
Then 

(a) W is a wandering space of T, i.e. cf. 1.3, 

A,Be®&A\\B ==> T(A)(W) ±T(B)(W); 

(b)17 WA e<P, els. [T(A) { V M ( i ) ^ 1 ] is a partial isometry on W to 
3C with 9ljif(ii) as null space; 

(c) V4£(P such that M (A) is invertible, T(A) {<s/M{A) }~x w an 
isometry on W to 3C; 

(d) Vil, ilx, i l i , • • • G(P 3 Ak are || & U?i4*C,4, 

17 For any closed (s.v.) linear operator S from TF to W, the symbols 3}s, 9ls, (fts 
will denote the domain, null-space, range of 5. The symbol S~x denotes the generalized 
inverse of S [17] defined by S'vlssidP?fis''S~1'Peu.(Sist where Pgfïl is the orthogonal pro­
jection on W onto the subspace 9NÏ. S"'1 is a s.v. closed, linear operator from W to W 
with the e.d. domain öls+öV" and the range SDsfi^l/. 
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S = VM(A), R = T(A){VM(A)}~i - T(A)S~K 

\T(A) - 2 * w } |rU) - Ê Z *̂)} = M (A) - T,M(Ak); 

(e) T(') is c.a. strongly or under the Banach norm | • | B, according as 
M(-) is c.a. strongly or under | • | B> 

PROOF, (a) is obvious; for if A||J3, then M(AC\B) = 0 and hence by 
(8.3) r(i l)(w)±r(JB)(w ,)> V w ^ ' G l ^ . 

(b) We recall first [17, (5.1)] that for any (s.v.) self ad joint linear 
operator S from W to W 

(1) SS"1 C c l s ^ S " 1 ) = Pcls.CR^ = P*£. 

Now let 

(2) AEV, 

Then 

(3) 2D/2 = SDs"1 = &s + CR5 is e J. in W. 

Also, by (8.3), (2) and (1) 

Vw, w' G »« , (*(w), R(v/))x = (55^(w), SS" 1 ^ ' ) V 

= ( / ( W ) , / ( « / ) ) R T , 

where 

(5) / = Pois MS = Pgi^. 

By (4) and (5) the restriction of R to Gis is an isometry and the restric­
tion of R to (R5" is zero, and so JR is a continuous linear operator. I t 
follows by a routine argument that its closure R is a partial isometry 
on els. £>/2, i.e. by (3) on W, into 3C and has Gig" as its null space. Since 
Gis=Ws = VljMU) = <K<MU)> we have (b). 

(c) follows immediately from (b). 
(d) The desired equality emerges on expanding the LHS and em­

ploying 8.2 (iii). 
(e) Let Vk^l,AkE&,Akbe || &A=d\J?AkE<S>.From (d) we see at 

once that 

(4) 

T{A) - Ë T(Ak) M(A) - Ë M(Ak) 

and 
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VwEW, I \T(A) - £ ) T(Ah)\ (w) I 
I I i ; lie 

= ( (M(A) - £ M(Ak)\ (w), w) . 

The two assertions in (e) clearly follow from these equalities. 

The following lemma is useful. 

8.7. LEMMA. Let T(-) be a W-to-5C, c.a.q.i. measure over (A, G$0, M), 
where (B0 is a ring over A. Then 

(a) VA, 5G(Bo & VwEW, 

{T(A) - T(B)}*{T(A) - T(B)} = M (A A B) 

| T(A) - T(B) \B = | M (A A B) \B 

| T(A)(w) - T(B)(w) |£ = | VM(A A B)(w) |V; 

(b) Vn^l & VAn,AE(&0, 

slim T(An) = T(A) «=» slim Jlf (^„ A ^ ) = 0; 
n—• « n—» «o 

(c) the set (Bo is metrized by p, where 

p(A, B) = | J f ( 4 A B) \B, A,Be®o 
d 

when sets A, Bfor which M(AAB) = 0 are identified; 
(d) with respect to the \ \B norm topology and hence also the strong 

operator topology, T(*) is uniformly continuous on the metric space (Bo. 
In particular V w è l & VAnj ^4£(Bo, 

p(An, A) ->0=> lim | r ( i l . ) - r(i4) |* - 0. 
n—*oo 

PROOF, (a) Expanding the LHS and using 8.2(iii) we get the first 
equation in (a), from which the second and third clearly follow on 
taking the appropriate norms. 

(b) is clear, since from the third equation in (a) 

| T(An)(w) - T(A)(w) |rc = | V(M(An A A)(w)) \w 

= (M(AnAA)(w),w)w. 

(c) Tha t p is a metric is easily checked on noting that for AQB> 
we have 0 ^ M (A) g M(B) and therefore j M (A) \Bû\ M(B) | *. 

(d) From (a) and (c) we see that V,4, £ £ ( B 0 & VwEW, 
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| T(A) - T(B) | i = p(A, B) 

and 

| T(A)(w) - T(B)(w) \* = | w\\{A, B), 
30, 

whence (d) clearly follows. 

8.8. DEFINITION. Let Tbe a W-to-3C, c.a.q.i. measure over (A, (P, M). 
(a) We define the sub space of T by 

$T = &{T(A)(W): A G(P} C oe. 
d 

(b) We call T W-basic iff S r = 3C. 

From 8.8 it follows at once that 

(8.9) $T = els. X <&ru) & Sr = fl 91 a w ; 
A6(p AGtf> 

and if P§ r is the projection on 3C onto Sr, then 

(8.10) Vyl G <P, 2T(ii)* = r ( i l ) * P v 

Also 

(8.11) Vx (E 3C, f*(0 = T(*)*(x) is a W-valued, c.a. measure on (P. 
d 

In general £**(•) will not be orthogonally scattered. 

As with c.a.o.s. measures we need to consider the case AÇJR. In 
this case we again find a natural correspondence between operator-
valued point-functions and set-functions governed by the analogues 
of 2.12 and 2.13. However, the following result enunciated in terms 
of set-functions alone will suffice for our purpose: 

8.12. LEMMA. Let 

(i) (P be the prering of intervals (a, b] 9 0 ^ a < 6 < < » , 
(ii) VJ£(P, T(J) be a continuous, linear operator on W to 3C, 
(iii) T{') be a finitely-additive measure on (P, 
(iv) 3 a function F on [0, <*> ) such that 

7X0, /]*r(0, s] = F(min{s, *}), s, t è 0. 

Then 
(a) F is a monotone increasing, W-to-W, nonnegative hermitian 

operator-valued function on [0, oo ) ; 
(b) T(-) is a W-to-30,, c.a.q.i. measure over ([0, oo), (P, .M), «/Âere I f 
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is the W-to-W, nonnegative, hermitian operator-valued measure on (P 
induced by F. 

PROOF, (a) By (iv) 

(i) v/ ̂  o, F(t) = r(o, /]*r(o, *], 
and this shows that F(t) is a W-to-W, nonnegative, hermitian opera­
tor. Next, by (iii) Va, b, c, d*z0, 

T(c, d]*T(a, b] = {T(0, d]* - r (0 , c]*} {T(0, 6] - T(0,a]} 

(2) = F(min{ô, d}) - F(min{a, d}) - F(min{&,<;}) 

+ F(min{a, c}). 

For a<b^c<d, this yields T(c, d]*T(a, &]=0, and adjoining, 
T{a, b]*T(c, d] = 0 . This shows that 

(3) A,BE(? &A\\B =» T(B)*T(A) = 0. 

Consequently, for 0 ^ a < & , 

F(ft) = r (0 , b]*T{0, 6] by (1) 

= {r(0, a]* + r (a , 6]*} {r(0, a] + T(a, b]}, by (iii) 

= F(a) + T(a, b]*T(a, b] è F (a) by (1) & (3). 

This completes the proof of (a). 
(b) Let Ay J3£(P; for definiteness let A = (a, b], B = (c, d] where 

a^c^b^d. Then by (2) 

T(B)*T(A) = F(b) - F{a) - F(c) + F (a) 

= F(b) - F(c) = Jf(J, c] = Jf(i l H B). 

We verify (4) similarly for other orderings of a, b, c, d. By (ii) and 
(4) we have (b). 

9. On the Hilbert space La (A, (B, M; W) 

In this section 

(i) W is a separable Hilbert space over C; 

(ii) (B is a a-ring over an arbitrary set A; 

(iii) M(') is a W-to-W, nonnegative, hermitian operator-valued 
measure on a sub 8-ring (B0 of (B, c.a. under the strong opera­
tor topology. 

Our primary purpose is to comment on the nature of the space 

(1) St2,w = L2(A, (B, M; W) 
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of PF-valued, (B-measurable functions on A, which are "square inte­
g r a t e " with respect to the opera tor-valued measure Af(-). But with 
an eye to future developments (cf., footnote 15), in the first part, A, 
of this section we shall first consider the more general space 

(2) £ 2 = &2.WOW = L2(A, (B, M; W'oW) 

where W' is a finite-dimensional18 Hubert space over C and W'oW 
is the tensor product of W' and W. Then in part B we shall revert to 
&2,w by taking W' = C and exploiting the natural isomorphism be­
tween the Hubert spaces Co IF and W. 

A. The tensor product W'oW is by definition the set of all Hil-
bert-Schmidt operators on W' to W. I t is a Hilbert space under the 
Euclidean or Hilbert-Schniidt inner product and norm : 

VS, T G W'oW, ( r , S)E = trace S*T, 
(9.2) , , 

I T\E = V(T, TV 
The trace is well defined and finite, since S and T are Hilbert-
Schmidt. Moreover, since dim. W'< oo, W'oW' is homeomorphic to 
the Banach space CL(W'y W') of continuous, linear operators on W' 
to W' under the Banach-norm. 

To define integration with respect to M we have to consider an 
even more general set-up.19 Let <ï> be a function on A to W'oW and 
S£ a function on A to WoW", where W" is a (third) Hilbert space. 
Then VXyGA & VAyGCBo 

r 

][>(Xy)Af(Ay)3>(Xy) G W'oW". 
1 

This suggests the possibility of defining 

(3) r^(X)Jf(dX)*(X) 
J A 

as a member of C L ( W , W") in a reasonable way, so that the result­
ing theory is a consistent extension of the theories known for special 
cases such as W" = W' = C, M( • ) = /*( • )Iw, M( • ) being a nonnegative 
measure, and Iw the identity operator on W. To fulfill this require­
ment the integrals (3) have to be bilinear, i.e. 

18 We assume finite-dimensionality only for reasons of simplicity. Actually we 
could consider any separable Hilbert space W', 

19 It is these facts which account for the length of the section, even though it is 
only ancillary to our main subject. 



456 P. MASANI [May 

(a) for integrable $,• & ^< on A to W' oW &.W o W", 

ƒ {^(X) + *,(X)}jf(dX){*!(X) + $2(A)} 

,ft„. - I Z f * ^ ( ^ ( X ) , 
(9.0) ] <=1 ,-_i ^ A 

and 

(b)20 V£ G W'oW, VS G W W " & VA, B E <Blo° 

3 4 H B G «o, 

f S-juOOJf (d\)R-XB(k) = 5 - M ( 4 H B) R. 
J A 

For simple functions, we will then get the expected result: 

VRj G W'oW, VSk G PToTF" & VAj, Bk G (Blo° 3 A, H £* G (B0 

(9-4) J A { Î ) 5*XB»(X)J- Jf (iX) | £ tf^OOJ 

= ÉÉs tM(^0^)2îy. 

Now suppose that the integrals (3) have been defined so as to sat­
isfy (9.3) and other similar requirements we might impose. Then it 
would be natural to define the space £2 of (2) by 

(9.5) £2 = < $ : $ > on A to W'oW & f $(A)*Af(<ZX)$(X) e*w/A . 

Since the adjoint <£>(X)* of 4>(X) is in WoW'> the last integral is in 
CL(W' y W') ; thus we are taking W,f = W'. Now a crucial property of 
£2 in the classical case, viz. W' = PF = C & M = ju, is its Hubert spaced-
ness under the inner product 

(#, ¥)„ = ƒ *(X)¥(X)M(<*X), 

and the everywhere-denseness of the C-valued, (Bo-simple functions 
in it. For higher dimensional W'9 W the natural analogue of this 
inner product is 

(9.6) (#, V)M = trace f ¥(<*X)*Af (dX)$(X), 
d
 J A 

20 (Blo° is the <r-algebra of sets "locally in (B", i.e. (B1OC = <I{E:.ECA & V£E&, 
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the trace being finite since the integral is in CL(W', W') and W' 
is finite dimensional. A measure M would be somewhat unsatis­
factory for our purposes, were <£2 to be incomplete under the norm 
induced by this inner product, viz. 

(9.7) | $\M = V ( $ , $)M = Vtrace f 3>(X)*M0£\)$(X). 
d J A 

I t would also be inadequate, were the linear manifold of W'oW-
valued, (Bo-simple functions: 

S(A, (B0; W'oW) 

= | E RkXAk: r^l,RkE W'oW &AkE &oj 

not dense in <£2- We are thus led to the following criterion for the 
adequacy of the measure M: 

9.9. CRITERION. A measure M satisfying (9.1)(iii) is adequate, iff it 
allows us to define the integrals (3) so as to ensure (9.3), etc., and to make 
the £2 of (9.5) a Hilbert space under the inner product (9.6), having 
S(A, (Bo; W'oW) as an e.d. linear manifold, when f unctions &,*& such 
that I $ — ̂  J M = 0 are identified. 

We shall now describe two known types of adequate measures. 
Let the measure M of (9.1) (iii) be the indefinite integral of a non-

negative measure', i.e. suppose that 

3 a nonnegative, definite, c.a. measure /x on (&for which (B̂  = (Bo, 
and 3 a function21 

loo 

l f ; ( - ) G i i (A, <B, /*; CL(TF, W)) 

(9.10) such that 

VB G (B„, M(B) = f M/ (X)M(<2A) = f M/ (X)X*(X)M(<*A), 
J * d

 J A 

the last being a Bochner integral. 

From the properties of the Bochner integral it follows that 

vw, w' e w & v# e (BM, 
(9.11) /• 

(Jf(5)w, w V = (Ml(\)w,w')wn{d\), 
J B 

21 For any Banach space X, we say that FÇzL™(K, (B, /*; X) , iff -F is on A to X 
and V#E(BM , -F(*)xfl(*) is Bochner integrable on A to X. (BM is as in 2.1 (iii). 
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i.e. the measure IJLWW> of (8.5) (ii) is absolutely continuous with respect 
to jx and 

(9.11') dnww>/dfi, = (Mt(-)w, w')w, a.e.O*). 

For measures subject to (9.10) it is natural to define the integrals 
(3) by 

(9.12) f y(\)M(d\)$(\) = f^( \) i l f ; (A)$(X)M(A), 
J A d Jk 

the last being a Bochner integral. Then by (9.5) 

$ G £ 2 <=» $ is on A to W'oW, & 

H')*M{(-M-) G £i(A, (B, /*; J^ 'oïT). 

I t is known that 

/or M as in (9.10), £2 defined by (9.13) is a pre-Hilbert space under 
(9.14) the inner product ( , )M when f unctions <ï>, \F 3 | $ — ^ |M == 0 are 

Since W7 is finite dimensional, this follows for instance from [26, 
4.7]. But as shown in [21, p. 71], even with W' = C, <£2 need not be 
complete. A further restriction on M sufficient to ensure the complete­
ness of £2 and the denseness of S(A, (BM; W'oW) in <£2 is that 

(9.15) max. rank M(B) < 00. 
Be© M 

This is a simple extension of a result of Rosenberg [44, 3.9, 3.1l] . To 
sum up, a measure M satisfying (9.1)(iii), (9.10) and (9.15) is adequate 
according to Criterion 9.9'; for such measures, the integrals (3) are de­
fined by (9.12). 

Another kind of measure, which we shall encounter is bounded and 
"diagonal" in the sense that 

the (B & (B0 of (9.1) are identical cr-algebras; 

V£G(Bo, M{B) = E/*/(B)JPi, 
i e / 

w/zere J is a {finite or infinite) set of positive integers, and the series 
converges strongly when J is infinite, /xy are c.a. probability measures 
on (B such that 

j , k G J & k > j => M/fc <£ /*/, 

Py are orthogonal projections of rank 1 on W to W,^ 

J2 Pj = Iw, PiPj = 0, i,j G / , * 7*3. 

(9.16) 
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For such measures the integrals (3) have to be defined by 

(9.17) f ¥(X)Jf (dX)S(X) = E f *(A)Py3>(A)^A), 
JA d jejJA 

it being presumed that the pair (<£, ̂ ) is such that 

Y; G / , *(-XPy*(0 G i i(A, (B, /zy; PT'oW"), 

and that for infinite / , the series in (9.17) converges strongly. I t 
follows from (9.5) that 

$ G £2, iff $ is on A to W'oW, 

V j G / , P ,*(Oe£s(A,(B,My;ÏF 'o ïF) , & 

X) f *(X)*P,-$(X)Mi(<00 cgs. strongly. 

The strong convergence is equivalent to convergence under the norms 
I I £ or I | E , cf. (9.2), since the inregrals are in CL(W', W') and 
dim. W' < 00. From (9.6) and (9.7) we now get 

v*, * G £2, (*, ^ = Z f C*V*(x), Py^(x))#;W 

jeJ J A 

|*|L= S f |Py#(X)|^(i\). 
t e.7 •/ A 

yeJ" ^ A 

I t follows easily that for M as in (9.16) £2 defined by (9.18) is a pre-
Hilbert space under the inner product ( , )M of (9.19) when functions*, 
SP" such that |$>—>£|M = 0 are identified. But we have not been able 
to establish its completeness. We can show, however, that if the /xy in 
(9.16) are related by the equalities: 

VjeJ, /*,(•) =/z(AyfV)/0y 

where fx is a c.a. probability measure on (B 
(9.20) F y 

Ay G (B & A* C Ay C Ai = A, V/, kEJ,k>j 
& ay = A*(Ay) > 0, 

d 

the resulting <£2 is complete and S(A, (B0; WoPF) is e.d. in it.22 To 
sum up, a measure M satisfying (9.1)(iii), (9.16) and (9.20) is adequate 
according to Criterion 9.9; for such measures the integrals (3) are defined 
by (9.17). 

22 The proof will appear in the printed version of [26, Appendix] by Mandrekar 
and Salehi, to whom the writer is grateful for discussion and criticism. 
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B. We shall now bring these general results on £2,wow to bear on 
the space £2,w of (1) by treating it as <£>2,Cow, i.e. by taking W' = C. 
To each w(EzW corresponds S^G CoW defined by 

(9.21) Sw(z) =zwEW, V* G C. 
d 

I t follows a t once that 

(4) Vw, w' EW, w~ Sw{\), & S*w{w') = («/, w)w = (5*-5 .0( l ) . 

Obviously, the correspondence: w—^Sw is a unitary operator on the 
Hubert space W onto the Hubert space CoW. To dispense ulti­
mately with the cumbersome Sw notation, we shall stretch our vector 
notation by writing: 

Vwu w2£W, & VNG CHW, W), 
(9.22) * * 

w2Nwi = (iV(wi), W2)TT = (S^iVS^Xl), 

where the last equality is clear from (4). 
Now let 0, \[/ be functions on A to W. Then S$(.), 5 (̂.> are functions 

on A to CoW, and by (9.22) VXfcGA & VAAG&O, 

r r 

Z *(X*)*Af(A»)*(X») = Z (Jf(A»)*(X*), iKA*)V 

(5) 

= {è^(x,)-M(A,).5,(x,)|(l). 

This equation suggests the following definition: 

9.23. DEFINITION. For c^yif/onA to W, the integral / A ^ * ( X ) Af (rfX)^(X) 
is said to exist iff J^S^^MidlCjS^çK) exists; furthermore 

ƒ xK\)*M(d\)<K\) = | ƒ 5* (x)M(^)5, (x)| (1). 

I t follows from (9.5) that 

<t> G ^2,TT <=> S^.) G C&2.CW 
& 

(9.24) V0,^eJB lfW-, (*,*)* = ( tfr)*M(dX)<t>(\) 

d J \ 
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In the following theorems and corollaries we list some properties of 
functions in £>2,w and of their integrals: 

9.25. THEOREM. Let 

(i) the measure M be as in (9.1)(iii), 
(ii) Vw, w'GW & V£G(Bo, / w ( £ ) =<* (M(B)w, w')w, cf.(8.5)(iii), 
(iii) VEG(Bloc, /^(X)*M(dX)0(X)=d/AXJi(X)^(X)*^(dX)*(X). 
(iv) V£G(Bl0C, 

£2,w(E) = {$• <t> G £2,IF & 0 vanishes, a.e. (M), on A\E}. 

Then 
(a) wfeew Af is adequate, cf. 9.9, <£2,TF W a Hilbert space and the linear 

manifold 

d V 1 

of (&o-simple functions on A to W is ed. in £2,TF; 

(b) Vwy> % ' G ^ & Vi4yf JB*G(Bo, 

J A { È WIXB»(X) J M(d\) J E WyXA7(X) I 
r 8 

= E E (^(-4y ^ £*)wy, wjb)ir; 

(c) V5G(Blo°, Vi4/G«o& VtDjGlf 

f M(d\) \ J2 «Wu,(X)} = JlM{BC\ A,)(w,) ; 
• ' S v j—1 / y« i 

(d) V0i, 0 2 £ < £ 2 , I F , (0i, Wiif = (^iX«1, 02X>S2)M, wAcre Si, 52 ar^ tóe 
supports of 0i , 02 ; 

(e) V t t ^ l , £nG(B l oc , -En < ^ || & UrE» = E 
00 

=» £,.»•(£) = Z ) £» . * (£ . ) & JBî. i r(£j±JBi. i r(JE;); 

(f) Vw^l ,E nG(B 1 0 0 , £ » o r e | | , Ur£» = £ , & 0, * £ £ » . * ( £ ) => 

V M ^ I , <̂ , ^ G £2,TT(EB), arad 

Ê f f(\)*M(d\)cj>(\) cgs. & = f *(X)*Af(dX)*(X); 
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(g) 0n->0 in £2jr, i.e. |0« — 0|ar-»O, 

=> V^G(Bloc, I fM(JX)tf>n(X) - f M(d\)(j>(\)\ - • 0 ; 

(h) V<t>onkto C, w0(-)G«fi2,w <=> 0G^2(A, (B,/*«,»; C); 
(j) V0, \f/ on A to C, 

(k) V«^(.) ,wV(0GA.ir , 

(w0(-),wty(-))if » f *(X)M)/w(dX) 
J A 

2 / . 

| w * ( - ) U = U(X)|2/xw^X). 
«J A 

9.26. THEOREM. L^ 

(i) the measure M be as in 9.1 (iii), 
(ii) (j>be a (^-measurable function on A to W, 
(iii) (B, = <i{B:BG<Bl00

 & 0 G £ 2 , T F ( £ ) } , Qf. 9.25(iv), 
(iv) V^G(B0, v„(B)=dfB4>Q<)*M(dk)4>Qi). 

Then 
(a) <£<£ is a ô-subring of (Bloc, awd p ^ is a finite (possibly unbounded) 

nonnegative, c.a. measure on (B ;̂ 
(b) (B0 = (B5=d{JB:BGcr((B0), & v(B)< oo }, wfore v is the Hahn ex­

tension of v$4> to the a-ring, <r ((&$), generated by (B ;̂ 
(c) V/G£i(A,cr((B,),*;C), ƒ(•)*(•) G üs.ir <MK* 

r{/(A)^(X)}*M(JX){/(X)0(X)} = f | /(X)|*„(d\). 
•̂  A •/ A 

9.27. THEOREM. Let 

(i) the measure M be as in (9.1) (iii) 
(ii) S be a continuous linear operator on a Hilbert space W' to W, 
(iii) V£G(Bo, N(B)=dS*M(B)S. 

Then 
(a) N is a W-to-W, nonnegative, hermitian, operator-valued measure 

on (Bo, c.a. under the strong op erator-topology) 
(b) 0G£2(A, (B, N; W') =* S{<j>(.)} G £*(A, (B, M; W)\ 
(c) V0,^G£2(A, (B,iV; TP) 

f yp(\YN(d\)4>(\) = f (5*(X)}*Jf(dX){50(X)}. 
•J A J A 
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9.28. COROLLARY. Let the measures M and ju satisfy (9.10) and (9.15). 
Then 

(a.)<t>eL2,w <=*• [VM'(')}4>(-)eLt(A,a,ii;W); 

(b) V0, *££,.»-, (*,*)* = f (Jf;(X)0(X),̂ (X)W(dX) 

«J A 

(c) V0G<C2,Tr& V5G(BM) /BM(^\)0(X)=/BM';(X)<^(X)M(dX); 
(d) V0GJB,^ f * ( • ) = / , ( • ) { * < • ) } , 

where /M( \ ) is the projection on W onto 91 jf /(\). 

The next result is obvious from (9.18), (9.19) and (9.24) despite 
the inadequacy of M: 

9.29. TRIVIALITY. Let the measure M of (9.1)(iii) satisfy (9.16). Then 
(a) <f>Çz£2,w, iff 4> is on A to W, 

Vj G / , PM-) G L Î ( A , (B, M W) 

& E f \PMX)\wfxj(d\)<co] 

(b) V0,^GcC2,Tr, ( * , * ) * = Z f C^i0(X),*(X))iF|*i(dX) 

l*|îr = E f | Pŷ (X) l̂ y(rfX). 
jGJ ^ A 

Finally, we must record for Besicovitch spaces the following 
theorem on the differentiation of Bochner integrals: 

9.30. DIFFERENTIATION THEOREM. Let 

(i) (A, (B) be a Besicovitch space with respect to the nonnegative, 
a-ftnite, c.a. Borel measure /x, and N\ stand for standard neighborhoods 
of\ cf. 2.5; 

(ii) the measure M be related to JJL as in (9.10); 

• T { (iii)Ao=<X:XG<r(M)& 

lim -$— f M; (x')M(dx') - M; (X) L = o l , 

<T(JA) being the spectrum of n, 
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(iv) V0G£ 2 , 

A* = | A : \ G <T(M) & 

lim -^— f M'M(XO*(X')M(^XO - Jfi(X)*(x) I = 0 } 
M ( # X ) J Nx \W ) 

Then (a) A\AoG(B & /i(A\A0)=0; 
(b) Vtf>G£2, A\A*£(B & M ( A \ A 0 ) = O . 

10. Integration with respect to c.a.q.i. measures 

In this section 

(i) 3C is any Hubert space and W a separable one, both over C; 
(ii) (B is a a-ring over an arbitrary set A; 

(iii) M is a W-to-W, nonnegative, hermitian operator-valued 
measure on a sub 8-ring (B0 of (B, c.a. under the strong 

(10.1) operator topology;23 

(iv) £2,pr=d^2(A, (B, M; W) is a pre-Hilbert space in which the 
linear manifold S (A, (B0; W) of (B0-simple functions on A 
to W is e.d.; 

(v) <£2,TT is the completion of the pre-Hilbert space £>2,w; 
(vi) T is a W-to-3C, c.a.q.i. measure over (A, (Bo, M). 

In view of its length we have divided this section into 7 parts labeled 
A, B, C, D, E, F, G. 

A. Our first objective is to define for each <f> in «£2,̂  the integral 
fjLT(d\)(l)Çk), in which the operator-valued measure T(-) acts on the 
W-vector valued integrand 0(-)>24 s o that it will have the following 
properties: 

(10.2) 

(a) f T(d\)<}>(\) E 3C 
J A 

(b) ( ƒ T(d\)4>(\), ƒ Z W * ( X ) ) - (*, Mu, cf. (9.24). 

We single out these properties because they entail all the others our 
integral possesses, as the following lemma makes clear: 

10.3. LEMMA. Any integral fAT(dk)(j)ÇK) defined for all functions <t> in 

28 (Bo=(BM when M satisfies (9.10), and (B0 = (B when M satisfies (9.16). 
24 A more accurate notation would be fAT(d\) {<t>(\)}. 
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a linear manifold S of <£2,TP, and having the properties (10.2) has the 
following properties'. V<£, \[/, <j>n& and Va, &GC, 

(a) \UT(d\)$Ck)\l, = \cj>\2
Mf 

(b)2* if for EGCB1-, /jir(dX)0(X)=d/Ar(dX){0(X)x*(X)}, *te» 
V i , 5 G ( B l o c , 

( ƒ r(dx)*(\), ƒ r(ix)^(x)^ 

= (A>XA,*XB)W = f *(X)*Jf(iX)0(X), 

(c) / A r ( d X ) { ^ ( X ) + ^ ( X ) } = afAT((Ik)(t>ÇK)+bfAT(dkWÇk), 

(d) |/Ar(dX)0m(X)-/Ar(dX)0»(x)|ac == I *..-*. IL 
(e) 0 n -*0 ** <e2,Tr, *ƒ UT(d\)4>nQ>) -> /Ar(dX)0(X) tn 3C. 
We omit the proof, as this closely resembles that of the correspond­

ing result [30, 5.3] for c.a.o.s. measures. 
We shall now define the integral in two steps, following the pattern 

for c.a.o.s. measures [30, §5]: 

10.4. DEFINITION (STEP l).26 For <££S(A, (B0; W), say<f>= ]£ïw*X^*» 
where WkÇzW, ^4fc£(Bo, 

/ ^ wG(R0 1 

A simple computation shows that 

(10.5) V0GS(A,(Bo;WO, f T(dK)4>(\) has the properties (10.2). 
«J A 

Consequently it has all the properties 10.3(a)-(e). Now let $£«£2,1^. 
By (10.1) (iv) there exists a sequence (4>n)i in S(A, (Bo; T̂ 0 such t n a t 

<t>n—>4> in £2,TT. This sequence is Cauchy in £>2,w and therefore by 
10.3(d), the sequence (fAT(dX)4>n(K))n=i is Cauchy in 3C and so has a 
limit x in 3C. Furthermore, if (4>n)i is another sequence in S (À, (B0; W) 
converging to <f> in <£2,TF then <£«— ̂ n-->0 in £2,1^, and therefore by 
10.3(d) 

I ƒ T(d\)<fin(\) - ƒ T(d\)tn(\) —» 0 , a s w—>oo. 
3C 

25 Recall that (Bloc is the (r-algebra of sets «locally in (B'\ i.e. (Bloo=rf{E:ECA & 
V£E(B, £H3G(B}3(B. 

26 Recall that S (A, (Boî W) denotes the set of (Bo-simple functions on A to W, cf. 
9.25(a). 
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This shows that the limit x depends only on <fi, and not on the approxi­
mating sequences. The following natural definition is thus unequivo­
cal: 

10.6. DEFINITION (STEP 2). For a <t> in <£2,TF, which is not (&Q-simple, 

f r(dX)0(X) = Hm f r(d\)0n(X), 
J A d n-+oo J A 

where (<t>n)î is any sequence in S(A, (Bo; W) converging to cj> in £2,w-

From (10.5) and 10.6 it follows easily that our integral has the 
properties (10.2), and so by 10.3, the properties 10.3(a)-(e) as well. 
Introducing the spatial integral 

(10.7)27 ƒ T(d\)(W) = | ƒ T(d\)<j>(\): <t>e£2,w\ , 

we may sum up its properties in the following theorem: 

10.8. ISOMORPHISM THEOREM. The correspondence^^ 0—•/AÏXdX)0(X) 
is a linear isometry on the pre-Hilbert space &2,w onto the linear mani-
foldJkT(dX)(W)<^W. 

10.9 COROLLARY, (a) els. fAT(dX)(W) =Sr, the subspace of the mea­
sure r ( - ) . For adequate M, cf. 9.9 & 9.25(a), fAT(d\)(W) = S r . 

(b) If the measure T(-) is 3C-basic, then cls.fA.T(d\)(W)=3Q,. If, 
furthermore, Mis adequate, then j\T\d\)(W) = 3C, i.e. roughly speaking, 
5C is a ucontinuous sum" of orthogonall( differential sub spaces" obtained 
from the wandering space W, cf. 8.6(a). 

PROOF, (a) Let xEfaT(d\)(W). Then by Defs. 10.4, 10.6, x is a 
linear combination X)i T(Ak)(wk), A & G (&o, wu G W, or a limit thereof; 
hence #GSr. Thus 

(1) f T(d\)(W) C $T, & so cis. f T(d\)(W) C Sr. 
J A •/ A 

To prove the reverse inclusion, note that by 10.4 & (10.7) 

V£ G (Bo & Vw G IF, 

r(B)(«o = f r(<zx){™x*(x)} G f T(d\)(w)} 
J A •/ A 

27 The notation ƒ A r(</\)(PP') for the set of all convergent vector integrals 
J A T(d\) {$(X)}, where <f>(\)ÇîW, is a reasonable extension of the standard notation 
zLk~oTk(W) for the set of all convergent vector sums 

£*-oF*{<*>(«}» where <f>(k) GW 
and T is a single operator. The term "spatial integral" seems to be more appropriate 
than the term "direct integral" used previously in [28, §6]. 
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and so 

V£ G (Bo, T(B)(W) C f T(d\)(W). 
J A 

Since the last set is a linear manifold, it follows that 

(2) $T = <&{T(B)(W):B G (BO} C cl. f T(d\)(W). 

(1) and (2) yield the first equality in (a). The second follows when M 
is adequate, for then the domain £>2,w of the isometry 2<r of 10.8 is a 
Hubert space, and therefore its range, fhT(d\)(W), is closed in 3C. 

This establishes (a), (b) follows trivially. 
Thm.10.8 and Cor.l0.9(a) subsume the Isomorphism Thm.2.3 for 

c.a.o.s. measures. Indeed, the latter emerges on taking W= C and 
M = JJL. But even for the most general W the precise connection be­
tween the concepts of integration with respect to c.a.q.i. and c.a.o.s. 
measures is easy to state: 

10.10 TRIVIALITY. Let (i) VwEW, £w(«) =dT(-)(w), /*«,«,(•) =<I 

(M(-)w, w)w cf. 8.5; (ii) <j>E.L2(Ai (B, fxWV}; C). Then 

f T(d\){<l>(\)w} = f *(X)k(<*X). 
• / A « /A 

PROOF. Write *> for fxww and first let <t> be (B„-simple, say <£ = ]> ï̂ C^XA*, 

CfcGC &i4*£(B,. Then 

f T(d\){<t>(\)w} =iT(Ak)(wck) =J2ckUA>c) 

(1) J A 

r *(x)k(d\). 
J A 

Next let 

(2) (f> = lim 4>n in Z,2(A, (B, p; C) & <£n fo (&v-simple. 
n-*oo 

Then by 9.25 (k) 

(3) | w<*> - w<t>n | i = f |<KX) - < (̂A) |%(iX). 

It follows from (2), (3) that w<f> = lim„-M wtj>n in £>i,w, and hence by 
Thm. 10.8, (1) and (2) 
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f T(d\){wcl>Çh)} = lim f T(d\){w<l>n(*.)} 

= lim ( <l>n(\)Ud\)= f <t>(\)Ud\). 
»-»oo J A. «̂  A 

10.11. COROLLARY. The correspondence between the W-to-30, c.a.q.i. 
measures over the same (A, (Bo, M) and the induced isometries on £z,w 
to 3C given by 10.8 is one-one; i.e. 

2 r i = 2r2 => Ti(-) - r 9 ( . ) m (B0. 

PROOF. By Thm.10.8 and Def.10.4, VAG®o & VwGW, 

S r > - X i ( 0 ) = f r<0*X){«Xi(X)} = r<U)(w), * = 1, 2. 
•J A 

From this the desired implication clearly follows. 

B. Our next objective is to show that every isometry 2 on £2,17 
into JC hails from a W-to-3Z c.a.q.i. measure in the manner of Thm. 
10.8. This hinges on the following two lemmas which are clear gen­
eralizations of our [30, 5.14] and 2.8: 

10.12. LEMMA (EFFECT OF AN ISOMETRY). Let 
(i) V be an isometry on 3C into a Hilbert space 3C', 

(ii) y A G (Bo, R{A) - Vo{T(A)}. 

Then 
(a) R is a W-to-30,', c.a.q.i. measure over (A, (Bo, M); 

(b) Vtf> G £«.*, vif r ( d \ )* (X) | = ƒ R(d\)<t>(\). 

PROOF, (a) Let 4G(Bo. Since T(A) and F are continuous linear 
operators on W to 3C and on 5C to 3C', therefore 

i£(4) w a continuous linear operator on W to 3C'. 

Also, since V is an isometry, therefore VA, J3G®o and Vw, w 'GW, 
(R(A)w, R(B)wf)x^(T(A)w1 T(B)W')K = (M(A(}B)W, W')W. Hence 
(a). 

(b) is easily verified for (Bo-simple <f> on A to W, and thence, since V 
is an isometry, by the usual limiting argument for any <j>Cz&i,w* 

10.13. LEMMA (INDICATOR C.A.Q.I. BASIC MEASURE FOR £>2tw)- Let 
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V4e<Bo& VwEW, {Mx(A)}(w)=dwxA(-).M 

Then, cf. (9.1)(v), 
(a) Mx(-) is a W-to-£2,w basic, c.a.q.i. measure over (A, (Bo, M); 

(b) V* G £*.w, f Mx(d\)<j>(\) = <>(•). 
• / A 

PROOF, (a) Let A, ££(Bo and «/, ze/£ W. Then to prove (a) we have 
only to show 

(1) WXA(-) G £2,TF, 

(2) (Mx(A)(w), Mx{B)(w.))z%9W = (AT(il H B)(w), w')Wj 

and 

(3) V0 e £2,TT, 0 e s^x. 

Now since i4£(B0 , which is the domain of M, 

»„(A) = (Jf(i4)(w),wV = | { V M ( i 4 ) } ( w ) | ^ < oo. 

Hence X A G ^ ( A , (B, JLW; C), and (1) follows by 9.25(h). 
Next by 9.25(k) 

LHS(2) = (WXA(-), WM'))M = ƒ X A ( X ) ^ 0 0 M ^ ' W 

= / w U r\B) = (M(A r\ B)wy w>)w. 

Finally, to prove (3), note that it holds for <££S(A, (B0; WO, since 

r r 

(4) * = E wfcXA* = ]£ Mx(Ak)(wk) G SMX. 
d 1 1 

But by (10.1)(iv) such functions <j> are e.d. in £2,w, and therefore they 
(or rather the corresponding elements [$]) are e.d. in £i,w- Hence 
(3) holds for any $ in <£2,TF. 

(b) Let 0GS(A, (Bo; WO, say 0 = £ i «fcXA*. Then by Def.10.4 
and (4) 

x A 1 

28 This definition of ikfx(') is perfect when &2,w is a Hilbert space, i.e. when the 
measure M is adequate. In the general case we should, strictly speaking, write 
[wx^C*)] on the RHS of_ the defining equality, with the stipulation that [<£(•)] 
denotes the element in JB2.Tr corresponding to #(•) in «C2.Tr. Here and in similar 
situations below we shall identify #(•) and [<£(•)]• 

JB2.Tr
�C2.Tr
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Thus the equality in (b) holds on the linear manifold S (A, (Bo; M). 
Since by 10.3(iv) this manifold is e.d. in &2,w, the equality holds 
throughout £2,w. 

10.14. THEOREM (A CONVERSE OF T H M . 1 0 . 8 ) . Let 
(i) 2 be an isometry on £>2,w into 3C, 
(ii) 2 be the isometric extension Ö / 2 on £2,w to 3C, 
(iii)V^G(Bo, R(A)=d 2 o { M x 0 4 ) } , where Mx(-) is as in 10.13. 

Then 
(a) R is a W-to-3Q,y c.a.q.i, measure over (A, (Bo, M) ; 
( b ) 2 = Z * , * . « . V 0 G £ 2 , T T , 2(<Ê)=/A#(<2\)4>(\). 

PROOF, (a) follows from 10.12(a), since by 10.13(a) Mx(-) is a 
W-to-£2,w, c.a.q.i. measure over (A, (Bo, M), and 2 is an isometry on 
£2,w into 3C. 

(b) Let0G<£2,TF. Then 

f JS(dX)0(X) = S < r Jfx(dX)0(X)j , by (ii) & 10.12(b), 

= 2(<*>), by 10.13(b), 

= 2(0), since 2 = 2 on £2,w. 

C. To simplify our enunciations we shall now assume that the 
measure M of (10.1) (iii) is adequate according to Criterion 9.9. Then 
by the Isomorphism Thm.10.8 and Cor.l0.9(a) to each #G3C there 
corresponds a unique function <t>xÇz£2,w such that P&T(x) =^T{4>X) 

and so 

(10.15) 4>m = 2"? Psr(x) « 2* (»). 

This brings up the question of finding <£*(•) for a given #G3C. The 
corresponding question for c.a.o.s. measures is answered by our 
Projection Theorems [30, 5.10] and 2.6. The analogues of these 
theorems for c.a.q.i. measures emerge from the following result: 

10.16. THEOREM. Let the measure M of (9.1)(iii) be adequate. Then 

(a) V£ G (Bo & V0 G £2tw, T(B)* ( ƒ T(^X)0(X)| = ƒ Jf (dX)$(X). 

(b) VB G (B0 & V* G 0C, f.(B)== r(5)*(») = f Jf(dX){2&(*)}(\). 

PROOF, (a) Case (i). Let <t> be (Bo-simple, say 
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r 

<t> = ]T) WkXAk, wk G W & A k E. (B0. 
i 

Then by Defs.10.4 & 8.2(iii), VJ5G(B0 

T(B)* i ƒ r(dx)*(\)l = S i ( 5 n i f c ) w . 

Also, by 9.25(c), 

f jf(d\){*(\)} = t « ( 5 n 4 i ) W . 

Case (ii). Let </> = limn-*oo <£n in £2,IF, where $» are (Bo-simple. Then 
using in succession Def. 10.6, the continuity of the operator T(B)*t 

result (a) for Case (i), and 9.25(g), we get 

T(B)* J ƒ ZW0(X)1 = T(B)* J lim ƒ T(d\)<j>n(\)\ 

= lim T(B)* i f T(d\)<l>n(\)\ 

= lim Ç M(d\)<l>n(\) 
n—• <» • / 5 

= f Md(\)<l>(\). 
J B 

Thus (a). 
(b) Let xG3C and 5 £ ( B 0 . Then 

f .(B) = T(B)* {Psrix)}, by (8.10) 

= T(B)*{ST (*,)} by def. of *, 

= f M(d\)<l>x(\) by (a) 

= fjf(dX){2?(*)}(X) by (10.15). 

The penultimate equation in the last proof shows that in a sense 
<j>x is the Radon-Nikod^m derivative of the 1/P-valued, c.a. measure Çx 

with respect to the W-to-W operator-valued measure M(- ) , and we 
could write: 

(10.160 Sr (*) = 0* = [(dM) -Vf , ] . 
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This statement corresponds to the Projection Theorem [30, 5.10] of 
c.a.o.s. measure theory. I t is convenient, however, to reserve this 
title for the following more useful version obtainable from (10.16') 
when the measure M is the indefinite integral of a nonnegative mea­
sure: 

10.17. PROJECTION THEOREM (FOR M AS IN (9.10) & (9.15)). Let 
(i) the measures M & /x satisfy (9.10) & (9.15), 
(ii) Vx£3C, <j)x(-) be the unique f unction in &i,w such that 

PsT(x) = | T(d\)<t>z(\), 
J A 

( i i i)*e3C, & V5G(BM, ?x(B)=dT(B)*(x). 
Then 

(a) M; (•){<!>„(•)} =dÇx/dK-); 
(b) when M(-)=^-)I, 4>Â-)=dUdy,{-). 

PROOF, (a) By Thm.l0.16(b) and Lma.9.28(c), VBEB„, 

UB)= f M(d\)<K\) = f t f ; ( X ) { ^ ) } M ( a ) , 
J B J B 

from which (a) is immediate. 
(b) follows, since M"/(X)=7, when M(-) = [x(-)I. 

If, further, (A, (B) is a Besicovitch space with respect to /*, the 
formulae in 10.17 provide recipes for finding <j>x\ 

10.18. PROJECTION THEOREM (FOR BESICOVITCH A & M AS IN (9.10) 
& (9.15)). Let 

(i) (A, (B) be a Besicovitch space with respect to the nonnegative, 
cr-finite, c.a., Borel measure /z, and N\ be a standard neighborhood of\, 
cf. 2.5, 

(ii) x£3C, and M &<l>xbe as in 10.17(i)&(ii). 
Then 

(a) If;<X) {«.(X)} = lim { — — r( t fx)*(*) | , a.e. GO on A; 

(b) in case M ( - ) = M ( ' K > 

*,(X) = lim ( — — - T ( ^ X ) * ( A ; ) 1 , a.e. fa) on A. 

PROOF, (a) Let Çx be as in 10.17(iii). Then as in the last proof 
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VJ5 G (Bw UB) = f M'M {^(X) }/Z(<*X). 

Since M / (•) {0 . (0} E i ? 0 ( A , (B, MÎ WO, (a) is immediate from the 
Differentiation Thm.9.30(b). 

(b) follows, since Mi (X) =1 when Af(-) =jn(-)i". 

The following result is of some interest. 

10.19. COROLLARY. Let 
(i) be as in the last theorem, 

(ii) # ( • ) - / * ( • ) / , 

r(iVx)* 
(iii) X G CT(M) & U = slim —7-7— ' 

Z7te# Lx is a continuous linear operator on 5C to W, iff {\} w aw a/öw 
o//x, i.e. /x{X} > 0 . 

iVote. Thus L\ will in general be a discontinuous linear operator, 
and dom.(Lx)C3C. 

PROOF. For a (fixed) XG<rW, let Lx be continuous and 
dom.(Lx)=5C. Then 

L* is a continuous linear operator on W to 3C. 

Hence V w £ W & VxGSC, 
* / T(iVx)* \ 

(«,Irx(w))œ = (L\(x)9 w)w = lim I———-(x),w) 

(1) = hm lx, (w)\ = lim lx, 1 , 
tfx-x \ /xCiVx) /ac tfx-+x \ fi(Nx) /rc 

where, cf. 8.5(a), 

Sw(-) =dT(-)w is a ZC-val., c.a.o.s. meas. over (A, (E, \w\ 2 M(-) ) -

By (1) wlim £„,(iV\) exists & = L\(w). 
#x-x 

Hence by [30, 6.6] /x{X} > 0 . 
Next let M { X } > 0 . Since JU(NX)->M{X} and so by 8.5(e) T(Nx) 

—>r{X} under the Banach norm | • | JB, it follows that as N\—>X, 

T(Nx) ^ T{\} T(NJ* ^ T{\}* 
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under the norm | • | B> Thus 

r{x}* 
L\ = —7—r~ — # continuous lin. oper. on 3C to W. 

D. At this stage it is convenient to revert to the case in which the 
measure M is subject to 9.1(iii) alone, and to comment on the notion 
of indefinite integral of a function <j> in <£2,TF with respect to our c.a.q.i. 
measure T(-): 

10.20. DEFINITION. 

(a) V$E<£2,w, the ^-valued set-junction ö^- ) such that (cf. 10.3(b)) 

V£ G (Bloc, «,(£) = f T(d\)<t>(\) 
d
 JE 

is called the indefinite integral of <j> with respect to T. 
(b) V0, \f/ÇE£2,Wj the C-valued set-function v^^ such that 

VE G (Bloc, Vi,*(E) == («,(£), B*(E))K 
a 

is called the covariance measure of 0̂ , 0̂ . 

10.21. TRIVIALITY. Let <f>, xf/E^.w- Then 
(a) ^ .^ ( - ) is a bounded, complex-valued, c.a. measure on the a-algebra 

(Bloc; and v$^ is nonnegative; 
(b) ö^(-) is a bounded, ^-valued, c.a.o.s. measure over (A, (Bloc, v<f>,4»); 
(c) ö^(-)i 0*(') are biorthogonal; more fully: 

VA, B G (Blo°, (0*C4), ^ ( S ) ) » = v^(A Pi J3). 

PROOF, (a) Let A, B, EG(B loc. Then by 10.3(b) 

(1) (fi+(A), Bt(B))x = f *(À)*Jf (<*X)0(X). 

On setting 4 = 5 = E , this becomes 

(2) *•,,(£) = f *(\)*M(d\)<K\), 

from which (a) is immediate, cf. 9.25(f). 
(b) & (c). Combining (1) and (2), we get 

(B*(A), W ) ) * = v*AAC\B), 

which yields (c); and on setting ^ = 0 , (b) follows. 
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From the fact that the measure 0$ is c.a., it follows that 

00 

Vw ^ l , £ „ e (Eloc, En C En+1 & U En = E 

(10.22) * 

=> V0 G <£2,TF, lim j T(d\)ct>(\) = J T(d\)<l>(\). 

From the fact that the measures v^, ify are biorthogonal, it follows 
that 

(10.23) f r 
V4>,1>e&2.w, T(dk)4>(\)± T(d\)t(\). 

Extending the notion of spatial integral given in (10.7) by letting 

(10.24) V£ G (Bloc, ƒ r(dX)(W0 ~ | ƒ T(dX)<K\): $ G £ 2 , T F | , 

it follows easily from 10.3 that the JET(C[\)(W) are linear manifolds 
in 3C. Concerning these we have the following result: 

10.25. THEOREM (DECOMPOSITION OF SPATIAL INTEGRAL), (a) Let 
V » ^ l , EnG(B loc, En be ||, and U;°E» = E. Then 

f T(d\)(w) = E f 2Wfl*0, f W ) W ± f r(d\)(wO; 
J E n=l «̂  # n ^ Em J En 

i.e. letting <$ÇL{E)=cls.JET(dX)(W)1 9tfl(-) is a c.a.o.s. sub space-valued 
measure on (Elo° for the Hubert space Sy. 

(b) Let V£G(B loc, Q(E) be the projection on §>T onto 201(E). Then Q(- ) 
is a spectral measure on (&loofor the Hubert space Sr, and 

V0 G £2,w, Q(E) | ƒ r(<oo*(x)} = ƒ r(jx)0(\). 

(c) The isometry S^: 0 — • / A T X ^ X ^ X ) <w £2,^ wto ft,T(d\)(W) 
carries the operation MXE of multiplication by XE into the projection 
Q(E), i.e. 

VE G (Bloc, R s t r . j ^ (W)Q(E) = S r o Mx^ o S ? \ 

PROOF, (a) The orthogonality relations in (a) are clear from (10.23) 
and (10.24). The equality in (a) follows from these relations, the 
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c.a.o.s. nature of the measures 6$, cf. 10.21(b), and the equality 
£Î,W(E) =Z)r£2 tirOE«) noted in 9.25(e). 

(b) The spectrality of the measure Q(') is clear from (a). Next, 
let EG& l o° and <t>E£2,w- Since 

T(dX)0(X) G 9TCCE) 

and 
•/ E 

f r(dX)*(X) - f T(d\)<t>(\) = f T(d\)<K\) JL 3fTC(E), 

the equality in (b) is immediate, 
(c) VEG(Bloc & V0Gje2,TF, 

{0(E) o 2y}(4>) = <?(£){ ƒ r(dx)0(x)| = ƒ r(ix)*(x) 

= Jr(â){M^)(\) = (2roI„)W. 

Thus, Ç(E)oSy = SroAfx^ on £2,^. Since S r is an isometry on 
<£2,TF onto JjiT(jâX)(W)} the required equality clearly follows. 

The concept of indefinite integral can be extended: with any (B-
measurable function ^ on A to W we can associate a c.a.o.s. measure 
00 and we can convert any integral with respect to this c.a.o.s. mea­
sure into one with respect to the c.a.q.i. measure T. This is shown in 
the following theorem: 

10.26. THEOREM. Let 
(i) 0 be any ^measurable function on A to W, 
(ii) (B<£ and v^ be defined as in 9.26(iii), (iv), 
(iii) VBG©,, e^B)=dfAT(d\){<j>ÇK)xB(\)}. 

Then (a) 0$ is a Wl-valued, c.a.o.s. measure over (A, o-((Bo), v)y where v is 
the Hahn extension of v^ to the cr-ring ^((B^) generated by (B^;29 

(b) V/G£2(A,<r((B0),*;C), ƒ(•)*(•) G <C2,PT & 

ffOOe^ik) = f r(<fo){/(x)*(X)}. 
J A J A 

PROOF, (a) We have to depart a little from the proof of 10.21(a). 
V.4, 5 G(B0, i.e. cf. 9.26(b), V^4, £ G & ; , we have 

29 We recall, cf. 9.26(a), that v^ is a finite (possible unbounded) nonnegative, c.a. 
measure on the S-ring (B^. 
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(0*(A), ^ ( 5 ) ) » = (*XA, 4>XB)M, by (10.12) (b) 

= f x^nfî (X)*(X)*Jf(dA)*(X), by (9.24) 
^ A 

= ^ ( 4 H S), cf. 9.25 (iii). 

(a) follows from this by Def.2.1. 
(b) Let ƒ G L 2 (A,(T((B 0 ) ,Ê;C) . Then as asserted in 9.26(c), 

IX•)$(') &£>2,w* Next, the equality in (c) is easily verified for (B;-
simple ƒ, i.e. cf. 9.26(b), for (B^-simple ƒ. For an arbitrary ƒ G 
L2(A, a((&<i>), v) C), we consider a sequence of (B^-simple functions ƒ„ 
converging to ƒ in the topology of this Hubert space. The correspond­
ing sequence (fn4>n)T then converges to f<j> in the pre-Hilbert space 
£>2twi and the desired equality easily follows. 

E. We turn next to the c.a.q.i. measure induced by a transformation 
of the measure-space A or of the Hubert space W. The following result 
is obvious: 

10.27. TRIVIALITY. Let 
(i) T be a W-to-fâ, c.a.q.i, measure over (A, (Bo, M), 

(ii) 0 be a function on A into a space Â, 

(iii) ( B = { 5 J C Â & 6r\B) G ©}, M = M o ^ 1 

(Bo = { 5 : 5 C Â & O-^B) £ (Bo}, 

r&ew Tod"1 is a W-to-3C, c.a.q.i. measure over (À, (Bo, iîï). 

10.28. THEOREM (SUBSTITUTION RULE). Let (i)-(iii) be as in 10.27, 

(iv) £2fw = L2(Â, (B, M; W). 

Then 

(a) £ G £2,TT i / <?o0 G <£2,TT; 

(b) f {To^)(d\)m = f r(JX)<?{0(X)}, 

in the sense that if either integral exists, then so does the other, and the 
two are equal. 

PROOF. This is proved first for (Bo-simple functions <£, and then by 
the usual limiting argument for any <?G<£2,TT. AS the proof parallels 
that of [30, 5.19], we omit the details. 



478 P. MASANI [May 

For transformations of the space W we have the following result: 

10.29. THEOREM. Let 
(i) S be a continuous linear operator on a Hubert space W' to W, 
(ii) VJ3G&0, R(B)=zT(B)oS, N(B) = S*oM(.B)oS. 

Then 
(a) R(-) is a W'-to-3C, c.a.q.i. measure over (A, (B0, N), cf. 9.27(a); 

(b) V* G Lt(A, (B, N; W')7 ${*(•)} G £2,TF & 

f R(dkM\) = f r(d\)[5{*(X)}]. 

PROOF, (a) In view of 9.27(a), the result (a) is clear from the 
equality, 

VA, B G (Bo, -R(jB)*£(i4) = S*T(B)*T(A)S = N(A C\ B). 

(b) Let ^G£ 2 (A , (B, N ; PT /) = £2.TF'. Then as asserted in 9.27(b), 
S{&(-)} Çz£2,w- Next, the equality in (b) is easily verified for 
*AGS(A, (Boî W). For an arbitrary \pG£2,w, we consider a sequence of 
functions \[/n in S (A, (Boî W') converging to \f/ in the topology of this 
pre-Hilbert space. The corresponding sequence (S{^n( ' )})r is then 
in S(A, (Bo; W) and converges to 5 { T ^ ( - ) } in the pre-Hilbert space 
£2,IF. From this the desired equality follows easily. 

Note. By extending our notion of spatial integral (10.7) to cover 
subspaces T ô of W, viz. 

ƒ T(d\)(Wo) j J ƒ r(d\)*(X): « G £2,ir0j , 

hat in 10.29 

f JR(dX)(ïF') = f r(d\){cfa. RangeS}. 
J A J A 

F. Our treatment so far has been basis-free. But when a basis for 
W is given, it is sometimes useful to formulate our results in terms of 
the action of the c.a.q.i. measure T{ • ) on the basic vectors of W. For 
instance, the expression in 10.18(b) for <f>x{') when M(-) =/x(-)7 and 
(A, (B) is a Besicovitch space takes the following form: 

10.30. COROLLARY. Let 
(i) A, (B, M, Nx be as in Thm.10.lS, 
(ii) M( . )= /* ( • ) / , 
(iii) (wjijŒJ) be an o.n. basis f or W, 

(iv) v ie / , &(-) = r(.)(wy). c/.8.5. 
Z7w» VxGSC & VXGA^, qf. 9.30(iv), 

A 

we can assert that in 10.29 

Thm.10.lS
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**(*) = Z l i m (*> ' \ ) WJ-
jeJ #x->X \ K ^ x ) M 

PROOF. In view of (iii), we need only show that given j in ƒ, 

= nm I x, 
#x-X \ 

But by Thm.l0.18(b) 

(1) (**(X), wy)iF = lim (*, - Î — — J , VA G A0X. 

(2) 0,(X) = lim — — T(Ni)*(x); 

and obviously, 

\ M(#X) AC 

(1) clearly follows from (2) and (3). 

We shall now show that given an orthonormal basis for W, our 
c.a.q.i. integral f\T(d\)(l>ÇK) can, in a large number of cases, be ex­
pressed as a sum of c.a.o.s. integrals derived from the basis: 

10.31. THEOREM. Let 
(i) the measures M & \x satisfy (9.10) & (9.15), 
(ii) <t>E£>2tw be such that \ y/Mi (-)\ B\4>(')\W G I* (A, (B, MÎ C), 
(iii) (WJ, jÇzJ) be an o.n. basis f or W, 
(iv) VjEJ, & ( • ) 7 r(•)(«»/). Mi(-)T>(M(.)(wy). W/V-

(a) V; G ƒ, (*(•), wy)îF G £2(A, CB, MiJ C); 

(b) <t> = X) (*(")> wyjirwy f» £2.Tr;50 

ye/ 

(c) f T(d\)<t>(\) = E f (*(X), W/W«0 in 5C. 
•J A ye/ J A 

iVöte. The restriction on M imposed in (ii) will be automatically 
fulfilled for all <j> in £2 w by a large class of measures M, e.g. for 
M( . )= /* ( • ) / • 

PROOF, (a) By (9.11') 

8 0 I .e .VG>0 l 3f ini teJ r
6 CJ" 3 JeQJoCJ & /ofinite 
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(1) f | (4>(M,ws)w\Wto) = f I (*(X),wy)ir |f(Jf;(X)(wi),wy)irM(dX). 
J A •/ A 

But 0(X) being in W, it follows from (iii) that 

(2) *(X) = E (*<A), «v)irw, & | «(X) \w - E I (*(X), «/)- T-
ye/ ye/ 

Hence 

|0KX),&)k^ |*(X)|*; 

also, 

| (jf; (x)«v, Wy) |TT = I V M ; (x)(wy) |* g | VM; (X) |i. 

It follows that the integrand on RHS(l) does not exceed 

U(X)|^|VM;(X)|B; 

hence by (ii) the integrals in (1) are finite, as required for (a), 
(b) V finite J 0 C / , we have cf. 9.28(b) 

U ( 0 ~ E (*(•), «V)w/|jr 
ye/0 

= f I VAf;(X) l*(X) - E (*(X),^yV*4 I ^ 
•J A I I jeJ0 / » TT 

(3) = f *j.Q0n(dk), say. 
^ A 

From (2) it follows that 

(4) VXGA, £r0(X)-»0, as ƒ „ - * / . 

Also, from (2) 

(5) | *(X) - E (*(X), «V)«V|IF ^ | *(X) |îr - E I (*M> «v)* T 
ye^o ye/ 0 

and hence, 

o =g ^,(x) g I V M ; (x) | i {| *(X) fr - £ I (<Kx), »*) | U 

(6) ^ | V M ; ( X ) | B U ( X ) | ; . 

From (4), (6), (ii) and Lebesgue's Thm. on Dominated Convergence, 
it follows that 
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/ feWM(^) —> °> as ^0 -> /, 
A 

i.e. by (3) that 

0 = E (<K0, wj)wwj in cC2,ir. 
ye/0 

(c) From (b) and Lemma 10.3(e) & (c) we get 

f T(d\)<t>(\) = Km f r(dX) j E (*(X), «v)*wyj 
*J A Jo~+J J A V y e / 0 ' 

« lim E f r(<BO{(#(A),Wi)ipW/} 

- lim E f (*(X), »/)*&(<&) 

jeJ J A 

where the penultimate step follows from 10.10. 

The corresponding result for measures subject to (9.16) and (9.20) 
is as follows: 

10.32. THEOREM. Let 
(i) the measures M & /x be as in (9.16) & (9.20), 
(ii) V / ' £ / , j8y be a unit vector in Range Py, 
(iii)vye/ &(-)=<*r( •)(&)• 

Then 
(a) VjÇzJ, £,(•) is a 30,-valued, c.a.o.s. measure over (À, (B, /zy); 
(b) Vj,keJ,J9*k, Sfc-LSe»; 
(c) V5G® & VwG TT, T(j5)(w) = J^jej (w, h)wti(JB) ; 
(d) V5G(B & V0GJB2.TF 

f r(d\)*(X) = E f (*(X),/9y)ir&(̂ ); 
•J B ye/ «̂  £ 

(e) V0G«C2,TTI Jfte measure v$$ defined in 10.20(b) is absolutely con­
tinuous with respect to ixy and 

^r- (•) = E I */{#(•)} £ — xAi(-) e ii(A, ©, M; 1?). 
«M ye/ «y 

PROOF, (a) is clear from 8.5(a), since by (9.16) 
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(1) Jf (•)(&) = M,(0& & SO (M(-)fr, h)w = Mi(0. 

(b) follows, since by (iii) and (1), 

(&U), &(5)) = (If (4 H £)&, ft)* = ^ ( 4 C\ B)(flh fa)w, 

and therefore &(4) JL &(JB) for jVft. 
(c) By (ii), (fijtjÇzJ) is an o.n. basis for W, and r(JB) is contin­

uous. Hence 

T{B)w = r(B) { E («S &)&} = E K ft)&(B). 
v ye/ / Ae/ 

(d) Let <f> ££2 jr. We first assert that 
n 

(2) X) (<K0> &Vft -* 0(0 i n
 <̂ 2,TT, as »-» oo. 

y-i 

For denote the sum on the left by Sn(0- Then by 9.29(b) 

| *(0 - 5 . ( 0 1 1 = E f I (0(A) -5.(X),/3y)ir|Vy(dX) 

j>n ^ A 

The RHS->0, as w->oo, since by 9.29(b) 

L f I (*(X), ftVlVy&ÈX) = | *|L < oo. 
ye/ «J A 

Thus (2). 
Now let <f>E£>2,w and 5£(B. Then by (2) 

n 

] £ ( * ( O X B ( O , 0 / ) I F & -* *(0x*(0 in <£2,TT, as»->a>. 
y-i 

It follows from 10.3(e) and 10.10 that 

f T(dk)4>Q0 = Hm f H a ) J £ («(X)XB(X), frVftj 

= lim Ê f (*(X), Pj)wSi(A) 
n-> oo y ^ J 5 

(*(X), h)wMA). 
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(e) Let <f>E£2,w and 5£(B. Then by 10.20(b), (d), (b) and the 
Pythagorean identity 

v^{B) T(d\)<f>{\) 

- Z l f (*(X), Pj)wb(d\) I 
JGJ I •/ B I 

= Z f |(<KA),&Vfw(<&), 
i€J J B 

= E f I (*00, &V I* - XA,-WMW by (9.20) 

12 I ƒ/(*)/*(<&), say. 
i 6 J • / B 

by (a) 

ye/ ^ 5 

It follows from B. Levi's Thm. on integration of monotone sequences 
that 

£ƒ , ( • ) G Li(A, (B, M; «) & **(*) = f j E / i t o } /*(dX). 
yeJ" J B \ jej ) 

From this (e) clearly follows. 

G. Finally, we shall consider a result needed for vectorial /^-trans­
form theory. It shows how any ordinary L2-valued, c.a.o.s. measure 
generates a W-to-£ztw, c.a.q.i. measure in the fashion of Lma. 10.13.31 

10.33. THEOREM. Let 
(i) W be a complex Hubert space, 
(ii) jut be a nonnegative, a-finite, c.a. measure on a cr-ring (B over a set A, 
(HO £2,0 = I*(A, (B, /x; C), <£2>TF = L2(A, (B, jil; IF), 
(iv) J6ea £,2,c-valued, c.a.o.s. measure over (F, #, p), cf. 2.1, 2.7, 
(v) Vi4G^& VwGW, |Afç(i4)}(w) =dw^(-)-

(a) M% is a W-to-£2,w, c.a.q.i. measure over (F, 9>, *>ƒ); 
(b) V<£G£2(F, ff, *>; C) & VweW, fTMt(dy){w4>(y)} =wh<t>(y)W, 
(c) Mi is W-to-£2,w basic, provided £ is £2,0 basic; 
(d) V0G£2,^ & Vil GIF,, fc(00(-) G Li(A, (Bf /x; W), & 

31 But 10.13 is not a corollary of 10.33, for in the latter we are imposing the restric­
tion M(') *=p(»)I. This severe restriction of course makes £2,w a Hubert space. 
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•J A A 

where the last is a W-valued Bochner integral. 

PROOF, (a) Let A, BE$, and w, w'E.W. Then by (iv) ^ ( O G & x 
and so by 9.25(h) W%A(')ÇZ£2,W', also obviously 

(1) Mz(A) is a continuous lin. oper. on W to &2.W-

Next, since £>2tw is as in (iii), 

({Mt(A)}(w), {Mt(B)}(w'))M = (WW),™'U'))M 

•J A 

(2) = (w, WOTTK^ H B), (by (iv)) 

By (1) and (2) we have (a). 
(b) Let w(E:W. Then V^gCF,,, w&i£<C2jr and from (iv) we see at 

once that 

(3) w£ is a£>2,w-valued c.a.o.s. meas. over (0, {F, | w | V). 

Also, by Triv.10.10, 

(4) V0 G L*(F, IF, »; C), f M^dy){w4>{y)} = f 0 ( y ) { ^ } . 
J y J A 

Now if <£n is Öv-simple, say $w = ]T)£ ^XAfc, AkÇ^vy then cf. [30, 5.4] 

(5) I 0n(^){^dy} = Z)^*{w£i*} = w I *(y)£^. 
J Y 1 «J F 

Next let 

(6) 4> = lim <t>n in L2(F, SF, *>; C), 
n-*oo 

where 0„ are ^„-simple. Then obviously 

(7) <t> = lim $n in L2(F, ff, | w |V, C). 

Hence 

f *G0 {*>£&} = Hm f ^ W { ^ } by (7) & (3) 

= lim w I n̂Cy)£«ftf by (s) 
n—>oo «/ y 

(8) = w j <}>(y)tav b y ( 6 ) & ( i v ) . 



i97o] QUASI-ISOMETRIC MEASURES 485 

Combining (4) and (8) we have (b). 
(c) Given that S$ = <fî2,c» we have to show that Sjw£ = £2jr. But by 

Lma. 10.13(a) 

&2,w = &MX = ®{MX(B)(W): B G ©,} 

= <®{WXB(-): wEW &BE®»}. 

Hence it will suffice to show that 

(9) Vw G W & VB G « „ WXB(-) G SM? 

Now since X B G & , C = S«» 30G-^2(F, #, P; C) such that 

J y 

Hence by (b) 

WXB(-)=W\ <t>{y)^dy^ I Mt(dy){w4>(y)}, 
•J Y J Y 

and thus (9) holds, cf. Cor. 10.9. 
(d) Let/G^2,pr and ^IGSv Then £AG<£2,C and hence 

e i ( - ) / ( 0 G £ i ( A , © , / i ; l T ) . 

Also, VwGW, 

({if«(il)}*(/), w)w = (ƒ, { # « 0 0 }(«»)*„, = (ƒ, iifcÓA^ 

= f a w , wuM)w»(d\)9 cf. (m) 

« r (s^5/(x), w)iTM(dx) 
«J A 

(10) = ( fjI(ÏÏf(\Md\), w"j 

where the last step is a consequence of well-known properties of the 
Bochner integral in Hubert space. Since (10) holds VwEW, we have 
(d). 

The W-to-£2,w, c.a.q.i. measures generated by J^.c-valued, c.a.o.s. 
measures are "bi-isometric" in the sense made clear in the following 
result: 

10.34. COROLLARY. Let 
(i)-(iii) be as in the last theorem, 
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(iv) £, rj be £><L,c-valuedy c.a.o.s. meas. over (F , SF, v), 
(v) M$, Mn be defined as in the last theorem (v). 

Then 
(a) V4, 5 G 3>, ATf(5)*Jf6(il) = (&, Vnh2tC Rstr.wI; 

(b) V4, £ G 3> & Vw, w' G ïT, 

(lfK^)(w), Jf,(5)(wO)jr = (&, VBh2tC(™, ™')w. 

PROOF. Let A, BE$r and wEW. Then 

lff(B)*Jf€(il)(w) = M,(B)*{wU(-)} 

= f ^(X) • wUQOnW), by 10.33(d) 

= ((U, VB)£2,C W. 

where the penultimate step follows from a simple property of the 
Bochner integral. This proves (a), (b) follows easily from (a). 

11. Theory for locally compact semigroups and groups 

In this section 

(i) 5C is a Hilbert space and W a separable one, both over C; 
(ii) A is an (additive) l.c?2 semigroup with neutral element 0, and 

(B is the family of B or el subsets of A; 
(11.1) (iii) M and (B0 are as in (10.1)(iii), where now A, (B are as in 

(ii), and furthermore M is adequate according to Criterion 9.9 ; 
(iv) <£2,TF=d^2(A, (B, M; W) is thus a Hilbert space; 
(v) T is a W-to-3C, c.a.q.i. measure over (A, (B0, M). 

I t follows of course from (ii) tha t 

(11.2) V X G A & V J 5 € ( B , X + -B&J3 + XG(B. 

We shall denote by m, <Th the right-translation operation and its adjoint 
on the space of all functions <j> on A, so that 

(113) VA.XGA, ( T » * ) ( X ) = . * ( X + A ) , M>)(X)= f* (* -*) . XGA+/*, 
l0, XGA\(A+A). 

Not necessarily abelian. 
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The operation + induces a right-congruence relation = on (B de­
fined by: B=A iff B=A+\ which brings up questions concerning 
the relation between the M and T measures of congruent sets. Guided 
by the usage of the terms "continuous" and "stationary" in the theory 
of stochastic processes, we shall adopt the following definition: 

11.4. DEFINITION, (a) We say that the c.a.q.i. measure T of (11.1) is 
right-continuous, iff 

V^GCBo&VXGA, £ + XG(B0 & s l i m r ( £ + X) = T(B). 
\->o 

(b) We say that T is right-stationary, iff the associated measure M 
is right-invariant, i.e. 

VB G (Bo & VX G A, B + X G ©o & M{B + X) = M(B). 

Note. In the sequel we shall often omit the prefix "right." Thus, 
continuous, stationary, invariant, etc. will mean right-continuous, 
right-stationary, right-invariant, etc. 

From 8.7(b) we see at once that 

(11.5) T is continuous <^ V£ G (Bo, slim M{(B + \)AB\ = 0 . 
\->o 

The condition on the right may be construed as a "continuity condi­
tion" on the measure M. 

In analogy with stochastic processes, continuity and stationarity 
are together necessary and sufficient for the existence of an isometric 
shift semigroup for our measure. To show this we need the following 
lemmas, the proofs of which we shall leave to the reader. 

11.6. LEMMA. Let the measure M of (11.1) (iii) be "continuous" and 
invariant,™ i.e. V.BG(Bo & VXGA, 

B + X G (Bo, slim M{(B + \)AB} = 0, M(B + X) = M(B). 
x-»o 

Then 
(a) V 0 , ^ G £ 2 , T F & VX, ÂGA, 

f (cr^)(X)*M(^X)(c7^)(X) = f *(X)*Jlf(dA)*(X), 
J A J A 

(<Th<t>, O-h^M = (# , &)M & I 0^0 |jf = | 4>\M'9 

83 When A is a I.e. group invariance implies continuity as we shall show in 11.14(b). 
But we do not know if this is true for I.e. semigroups in general. 
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(b) (<r\, XGA) is a strongly continuous semigroup of isometries on the 
Hubert space £%tw into £>2,w-

11.7. LEMMA. Let 

(i) 3C, 5C be Hilbert spaces over C, 
(ii) 5 be a function with domain £>CI3C and range (RC3C such that 

V#, y G 3C, (Sa, S » ^ = (x, y)^, 

(iii) 5 = ^ ©(5) be the (closed) linear subspace spanned by S in the 
direct sum 3C X 3C. 

Then S is a (s.v.) closed, linear isometry on ©(£>) onto ©((ft). 

With the aid of these lemmas we can prove the following analogue 
of our [30, 7.5] and of classical results on stationary stochastic pro­
cesses, cf. [20, p. 55]: 

11.8. THEOREM (EXISTENCE OF SHIFT SEMIGROUP). The following 
conditions are equivalent: 
(a) the measure T is right-continuous and right-stationary, 
(13) 3 a strongly continuous semigroup (S\, XGA) of isometries on §>T 

into §>T such that 

VX G A & VB G (Bo, B + X G (Bo & Sxo{T(B)} = T(B + X). 

PROOF. We may replace (a) by its equivalent version, cf. (11.5), 

VX G A & V£ G (Bo, 

(«0 
5 + X G (Bo, slim M{(B + \)AB\ = 0, M(B + X) = Jf(JB). 

x~>o 

The implication (j8)=»(a') is obvious. For, let (]3) hold, XGA and 
#G(B0- Then J3+XG(B0, and 

slim T(B + X) = slim Sx o 5T(B) = T(B), 
x-*o x-*o 

and hence by Lma.8.7(b), 

s\imM{(B + \)AB} = 0 . 
X-K) 

Also, cf. 8 .2 (H) , 

M(B + X) = T(J5 + \)*T(B + X) = r(J8)* sts^T(B) 

= T(B)*T(B) = Af(B). 

Thus (a7) holds. 
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Next let (a') hold.84 For a fixed X£A define the operator Sx on the 
linear manifold r((B0)(W0 C $T C 3C by 

(1) S*{r(il)(«0} = T(il + X)(w), A E (Bo, w G TT. 

We claim that Sx, so defined, is a s.v. operator on r((B0)(W0 into it­
self, not dependent on the choice of A and w. To see this, first note 
that 

(2) VA, B G (Bo, (il H B) + X = (il + X) H (5 + X), 

and therefore, 

(T(A)w, T(B)w')x> = (M(A n J5)w, w 'V by (8.3) 

= (If {il H B) + X}w, w')ir by (a) 

= (if {(il + X) H (5 + \)}w, w')w by (2) 

= (T(A + X)w, r ( B + X W by (8.3). 

I t easily follows from (3) and (a') that 

| T(A)w - r ( 3 ) w ' & = | r ( i l + \)w - T(B + \)w' &. 

Hence VA, 5G(B 0 & Vw, w'EW 

T(A)w = T(5)w/ => r ( i l + X)w = T{B + \)w'. 

Thus, 

(4) S\ is a s.v. operator on T(B0)(W) into itself. 

The equation (3) also shows that Vi4, Z>£(Bo & Vw, w'ÇEW 

(SX{T(A)W}, Si{T(BW])x = (r( i l )w, r(5)W ')ac, 

i.e. 

(5) Vx, y G r((Bo)(WO £ OC, (Sx(*), S x ^ ) ) » = (*, a/)». 

Now let S\ = d ©(Sx) be the (closed) linear subspace spanned by Sx 
in the direct sum X X3C. Then by the last lemma, Sx is an isometry on 
©(3)) onto ©((R). But by (4) 3D = r((B0)(TF)2(R, and so ©((R)C©(£>) 
= $T- Thus, 

(6) VX GA, Sx w aw isometry on Sr iw/o Sy. 

In view of (6) we can now restate (1) in the form 

(7) VX G A & Vil G (Bo, Sx o r ( i l ) = T(i4 + X). 

u Our proof now parallels that of [30, Thm.9.5]. 
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Next from (1) and (4) we easily see that 

VX, X G A, S\S\> = Sx+\'. 

But since Sx, S\>, Sx+x' are single valued and have the same closed 
domain $T, it follows that 

(8) £x+x< = ®(Sx+v) = ®(5x-5x0 - @(5x)-@(5x0 = 3x-Sx'. 

Finally, let &GA, and^GSrco» say x=fAT(dX)cl)Çk), where<£G<£2,TF. 
Then by (6), 10.12, (7) and the Substitution Rule 10.27 

2 

by (8) 

by (9) 

by 10.3(d) 

by 11.6(b) 

Sh(x) = f r ( d \ + h)4,(\) = f T(dk')4>Qi' - h) 
J A «J A+c 

( 9 ) = f r(d\')(«•**)(X'), by (11.3). 
J A 

Hence 

I ( S M - * - 3 0 ( * ) | « = \(Sh-I)(x)\x 

=» I f T(d\)(*h<t>)(\) - f T(d\)<t>(\) 
M A •/ A 

— I <7"/i(#) "~ <t>\M 

(10) ->0, asA-->0, 

By (6), (7), (8) & (10) we have (jS). 

11.9. DEFINITION. For a right-continuous, right-stationary, c.a.q.i. 
measure T, we shall call the (Sx, XGA) given by 11.8(/S) the right-shift 
semigroup of T. 

For continuous, stationary, c.a.q.i. measures we have as announced 
for the abelian case in [31, (3.5), (3.6)],85 the following strengthened 
version of our Isomorphism Thm.10.8: 

11.10. ISOMORPHISM THEOREM (CONTINUOUS, STATIONARY T OVER 

SEMIGROUP). Let the measure T of ( l l . l ) (v ) be right-continuous and 
right-stationary with shift semigroup (S\> XGA). Then 

(a) the isometry S r '.<i>—*jAT(d\)4>(k) on £>2,w onto $T carries the opera­
tion ox on Ju2,w into the operation Sc on $T, i.e. 

85 In [31, (3.6)] Rstr.SySc should replace SC} and <rc should replace r_c. The use of 
T-c is correct provided that £>2,w is redefined with reference to a larger group as in 
(11.12) below. Unfortunately, this intended qualification is not stated in [31 ], except 
for a special case on p. 618, footnote. 
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- l 
VX G: A, iSx = 2 r o ex o Dr ; 

(b) VcGA, V5£(B l o c & V^G&.ir . 

sc{ f r(dx)*(X)l = f T(d\)<i>(\ - c) = f r(dx)(<r̂ )(X). 

PROOF, (a) Let s £ A . We shall first show that 

(A) sc I ƒ r(dX)«(X)l = ƒ r(<*x)*(X - c) = ƒ r(<zx) {^(X)}. 

The second equality in (A) is immediate from the definition of crc$. 
Hence we need only show that LHS(A) = RHS(A). 

Case (i).Let(l>Çk) == dJ^WkXAk, wkEW & -4*6®. Then by 10.4 and 
11.808) 

LHS(A) = se | £ ru*)w*| = Z r u * + c)wk. 

Also, since <rc<j£> = ]T)i tt>*x<A*+c> therefore by 10.4 

RHS(A) = ƒ r(dX) | è %X^A+c(X)l = E ^ * + <>*• 

Case (ii). Let 0 = lim^^oo <j>n in <£2,TT, where the <t>n are as in Case (i). 
Then by the continuity of Sc and Case (i), 

(1) LHS(A) = lim Sc\ f T(d\)<l>n(\)\ 

= lim f r(ix)M„)(x). 
n—>oo */ A 

But by Lma. 11.6(a), 

I <rc<t>n — <rc$ |M = I 0n — ̂  |iw —> 0, as n —•» oo, 

i.e. (Tc<i)-=Yimn^(Tc<t>n in cC2.Tr. Hence by 10.3(e), RHS(l) = RHS(A), 
which of course establishes (A). 

By (A), V0G£2,TT, 

ScoM<l>) = Sel ƒ W)<KX)1 = ƒ T(d\)(<rc<t>) = 2Too-c(0). 

Thus 5coSr=S2'0(rc, as required for (a), 
(b) Let J3G(Bloe. Then 

cC2.Tr
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LHS(b) 7 & [ J r(<öO{*(X)xBOO}l 

= f T(d\){<j>(X-c)xB(\-c)}, by (A) 
J A+e 

= f T(d\){cl>(\-c)xB+c(\)} 
J A+c 

= f T(d\)<j>(\ - c), since JB + c C A + c . 
£-fC 

This proves the first equality in (b). The second is obvious from the 
definition of <rc. 

The last theorem yields as a corollary the translational properties 
of the spatial integrals (10.24) and of the corresponding subspace-
valued and projection-valued measures (cf. 10.25): 

11.11. COROLLARY. Let the measure T of ( l l . l ) (v ) be right-stationary 
with shift semigroup (Sx, X£A). Then 

(a) VXGA& V5G(Bloc, Sx{fBT(dk)(W)} =fB+*T(d\)(W); 
(b) ffî(-) and Q(-) being as in T/m.10.25, we have 

VXGA & V£G(B100, Sx{3îZ(£)} =2fîl(J5+c), SxoQ(B)oSt =Q(B+X). 

PROOF, (a) Let cGA and 5G& l o c . Then by T h m . l l . 10(b) and 
(10.24), V 0 G £ 2 , T T 

Sc i f T(d\)<t>(\)\ = f r(<ZA)M>)(X) G f T(d\)(W). 

Hence 

(i) 5. | fr(d\)(ï ïo}çJ r(<A)(Ti0-

But obviously V^G^.TT, <rcTc(\p) — XA+C(-)IK-)> and so by Thm. 
11.10(b) 

f T(d\)4,(X) = f T(d\)(<rcTct)(\) =sA f r(dX)(T^)(X)l . 

Hence 

(2) ƒ T(<ZX)(W0 C 5c | ƒ T(d\)(W)\ . 
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By (1) and (2) we have (a), (b) follows trivially. 

So far we have not assumed that the semigroup A is part of a larger 
group. Suppose that our semigroup, now denoted by A0, is a subsemi-
group of an I.e. group A, and that the measure M is defined as in 
(ll . l)(i i i) for the group A and its Borel family (B. Then £2,w~d 
Li(At (B, M; W) is a Hubert space. Denoting by (Bo, M0 the re­
strictions of (B and M to Ao, it is now convenient to redefine £%,w~d 
Z<2(Ao, (Bo, M0; W) by 

(11.12) &2,w = {<£*• 4> G &2,w & # vanishes a.e. n on A\A0}. 
d v 

With this interpretation, &%tW is a subspace of £>2,w, and it is clear 
that 

VX G A0 & Vtf> G £ 2 V, ax(«) = T_X(0). 

Consequently, for continuous, stationary measures the equation in 
(11.10) (a) can be written 

(11.13) VX G Ao, Sx = S r o r - x o S y 1 . 

The correspondence S^ 1 may therefore be termed a right-translational 
representation of the semigroup (Sx, XGA0). 

The rest of this section is devoted to the simplifications which 
accrue in the results 11.8, 11.10, 11.11 when the semigroup A is 
actually a I.e. group. These stem from the fact that an operator-
valued measure which is right-invariant over the entire group A is 
a constant operator multiple of the right-Haar measure: 

11.14. LEMMA. Let 
(i) A be a I.e. group with right-Haar measure m, 
(ii) the measure M of (11.1) (iii) be right-invariant, i.e. 

VX G A & VB G (Bo, B + X G (Bo & M(B + X) = M(B). 

Then 
(a) 3 a nonnegative hermitian operator H0 on W to W such that 

M(-)=m(')H0 on (B0; 
(b) M is "continuous," i.e. VJ3G(Bo, slimx-o M{ (B+X)AB} =0;in 

fact V5G(Bo, limx+o\M{(B+X)AB}\B = 0. 

PROOF, (a) Let w, w'ÇEW, and 

(1) A W ( - ) T (M(-)w,w')w on (B0. 
a 

Then nWW' is a complex-valued c.a. measure on (Bo, and by (ii) 
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(2) VX G A & VB G ©o, / w ( £ + X) = / w ( 5 ) . 

I t follows that this equation will also hold for the Hahn extension of 
\xww> for all B in the domain of this extension. Hence by the uniqueness 
of right-Haar measure up to a multiplicative constant, 

(3) M W ( - ) = cWW'-m{') on (Bo, where cWW' = const. G C. 

Now let A, BE®o be such that m(A)>0<m(B). Then by (1) and 
(3), Vw, w'E.W, 

(M(A) \ (M(B) \ 

\m{A) Jw \m(B) ) w 

Hence 
M{A)/m{A) = M(B)/m(B) = £r0, say. 

Thus 

(4) V.4 G (Bo 9 w(^ ) > 0, M (A) = tn(A)-H0. 

But by (1) and (3), w( .4 )=0 => M(A)=0, and so (4) holds for all 
i £ ( B 0 . Also, since by (l l . l)(i i i) M(A) is a nonnegative, hermitian 
operator on W to W, so by (4) is H0. This proves (a), 

(b) By (a), V£G(B0, 

(5) | M{(B + \)AB} \B = m{{B + \)AB) \ H,\B. 

But since m is a (regular) Haar measure, the function fB defined by 

fB(X) ^m{(B + \)AB}, X G A 

is continuous on A, cf. Halmos [13, p . 266, Thm.A], and so fB(K) 
—>m(BAB) = 0, as X—>0. Hence (b) follows from (5). 

With the aid of this lemma we obtain the following result for groups 
corresponding to Thm.11.8 for semigroups: 

11.15. THEOREM (EXISTENCE OF SHIFT GROUP). Let A be a I.e. group 
with right-Haar measure m. Then the following conditions are equiva­
lent: 
(a) the measure T is right-stationary, 
(a') the measure M of 11.1 (iii) is m(-)H0, and so (B0 = (BW, where Ho is 

a nonnegative, hermitian operator on W to W, 
{a") the measure T is right-continuous and right-stationary, 
08) 3 a strongly continuous group (U\, XGA) of unitary operators on 

$T onto ST such that 

V X G A & V^GCB™, J5 + XG(BOT & Uxo{T(B)} « r(J5 + X). 
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PROOF. Tha t (a)<=>(a') is clear from Def.ll.4(b) of stationarity 
and the last lemma (a). Tha t (a')<=>(a") follows from the last lemma 
(b) in view of (11.5). 

To see that (a")*=*(fi), first note that by Thm.11.8, the condition 
(a") is equivalent to the condition 11.8 (/3). Hence it only remains to 
show that the semigroup (Sx, X£A) of 11.8(/3) is actually a group of 
unitary operators on S r onto $T-

Now let XGA. Then by 11.808), V^G(B0, SypT(B-\) = T(B), 
and so 

VB £ (Bo & Vw G W, T(B)w = Sx{ T(B - \)w} G 5x(Sr). 

Hence 

Sr = ©{ T(B)w:B G (B0 & w G P^} Q Sx(Sr) £ Sr. 

Thus each Sx is on $T onto Sy, and 5\ being an isometry it follows that 
each is unitary on S r onto $T- I t is now obvious that (5\, X£A) is a 
group. 

11.16. DEFINITION. For a right-stationary c.a.q.i. measure T, given 
as in (11.1) but with A a I.e. group, we shall call the (U\, X£A) given 
by 11.15 the right shift-group of T. 

The following analogue for groups of Theorem 11.10 is immediate 
from 11.10 and (11.13) in which A 0 =A: 

11.17. ISOMORPHISM THEOREM (CONTINUOUS, STATIONARY T OVER 

GROUPS). Let 

(i) A be a I.e. group with right-Haar measure m, 
(ii) the measure T of (11.1) (v) be right-stationary with shift group 
(£/ x ,X£A). 

Then 
(a) the isometry ZT* <t>—*fAT(dX)<f>(k) on £%,w onto ST carries the opera­

tion r_\ on £>2,wZ6 into the operation U\ on Sr, i-e. 

VX G A, U\ = Sy o r_x o Sr ; 

(b) VXGA, V£e(B l 0 0& V<t>G£2,w, 

Ucij T(d\)<l>(\)\ = ƒ T(d\)<t>(\ - c). 

Also quite obvious is the following analogue for groups of Cor. 11.11: 

« Where now £2,ir=£2(A, (B, m(-)Ho; IF), cf. 11.15(<x'). 
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11.18. COROLLARY. Let (i) & (ii) be as in 11.17, (iii) M(-) and Q(-) 
be the spatial integral sub space-valued measure and spectral measure of 
T, cf. 10.2S. Then 

(a) V X G A & V J 5 G (Bloc, Z7X < f T(d\)(W)\ » ƒ T(d\)(W); 

(b) v x G A & v ^ e (Bloc, Ux[m(B)} = grc(Jî + x), 

U*oQ(B)oUt = Q(B + X). 

Now suppose that in the last corollary the c.a.q.i. measure T is 
W-to-3C basic, so that Sr = 3C. Then its shift group (Z7x, X£A) acts on 
JC onto 3C, and its spatial integral spectral measure Q(>) denned on 
(Bloc becomes a spectral measure for 3C, and the two are related as in 
11.18(b). We also have the result 11.17(a) connecting U\ and r_x, 
and of course the more general result 10.25(c) connecting Q(B) and 
MXR. We have thus proved the following result: 

11.19. COROLLARY. Let 
(i) A be a I.e. group with right-Haar measure m, 
(ii) the c.a.q.i. measure T of (11.1) be W-to-30, basic, and right-sta­

tionary with shift group (U\, X£A), 
(iii) Q(-) be the spatial integral spectral measure of T on (Bloc. 

Then 
(a) (?(') ^ a (isystem ofimprimitivity"for (U\, X£A), i.e. 

VX G A & VJ5 G & loc, UxoQ(B)oUt = Q(B + X); 

(b) the correspondence 2 r : 0—»/Ar(dX)0(X) is a unitary operator on 
£2,TT36 onto 3C such that 

VX G A & VBE (Bl0°, Ux = Sror^oSy 1 

& Q(B) = SroM^oSr 1 . 

11.20. REMARK. The term "system of imprimitivity, , , due originally 
to Frobenius, was reintroduced in the present context by Mackey, 
cf. [25, p. 50]. His Imprimitivity Theorem for a I.e. group A [24, 
T h m . l ] says in essence that if Q(-) is any such system for a (U\, 
XGA), then there exists an isomorphism 2) on an L% space over A 
onto 5C satisfying the intertwining relations given in 11.19(b). In 
Cor. 11.19 we have shown that under the hypotheses (ii) & (iii) such 
an "intertwining" isomorphism 2 does indeed exist and has the 

* Where now £*tW=L%(A> (B, !»(•)&; W), cf. 11.15(<*'). 
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explicit form S r . From this it is clear that to get an explicit, c.a.q.i. 
measure-theoretic proof of Mackey's Thm., we have only to show that 
given a system of imprimitivity Q(-) for ( U\, X £ A ) , there exists a Hubert 
space W and a measure T satisfying 11.19(ii)&(iii). The discussion 
of the italicized assertion must, however, await our explication of 
spectral representations (§14). 

12. A new approach to representation theory 

Hitherto representation theorems have been proved ab initio. But 
many of the proofs reveal common features such as the consideration 
of everywhere dense linear manifolds, the use of the principle of 
extension by continuity, the decomposition of a space into a sum of 
orthogonal, invariant subspaces, etc. Now according to Thm. 10.14, 
every isometry between an arbitrary Hubert space 3C and a Hilbertian 
or pre-Hilbertian Sti,w space of functions with values in any separable 
Hilbert space W (in which, moreover, we can take any adequate or 
nearly adequate W-to-W, nonnegative, hermitian operator-valued 
measure) is realizable by integration with respect to a W-to-3C, c.a.q.i. 
measure. I t follows that a large number of representation theorems 
can be recast in the same general form by using our integration 
theory. 

This suggests a common approach to such representation theorems 
based on the following procedure: 

12.1 PROCEDURE, (i) From the given data, find the auxiliary Hilbert 
space W, and define a W-to-3C, op erator-valued set-function T(-) over 
a suitable space A ; 

(ii) Show that T(-) is a W-to-3C, c.a.q.i. measure, and find 2>T\ 
{The Isomorphism Thm.lO.S then immediately yields a unitary operator 
HIT on <£2,TF onto S^.) 

(iii) Use one or more of the results 10.17, 10.18, 10.30- to get 
the adjoint Sr , which is the desired representation] 

(iv) If the space Ais a I.e. semigroup or group, and the measure M is 
adequate, employ the results of §11. 

The utility of this approach will depend of course on the ease with 
which steps (i)-(iv) can be accomplished. Assuming its feasibility, 
the approach has the merits of explicitness and systematization cited 
in §3 for the case q — 1. 

Steps (i) and (ii) of Procedure 11.1 present no difficulties when the 
representation problem is to extend a classical unitary transform 
between two L2-spaces to one between the corresponding spaces of 
vector-valued functions. Suppose that S is a unitary transform on L% 
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onto L2 defined explicitly in terms of a L2-basic, c.a.o.s. measure rj 
according to Procedure 3.1. We would then accept a unitary trans­
form 2 between the corresponding spaces L2tw, L2,w of functions with 
values in the Hilbert space W as a legitimate extension of 2 , provided 
that it meets the requirement: 

(12.2) V</>EL2 & Vw G W, S(w0) « wS(0). 

Our Theorem. 10.33(b) shows at once that the choices T(*) —dMn and 
S =dS5T will fulfill this requirement. Indeed, the other parts of The­
orem.10.33 and Corollary.10.34 enable us to derive readily the explicit 
theory for S from the corresponding (known) theory for 2 . 

Rather than justify these remarks in general terms, we shall illus­
trate them by considering in detail the vectorial Fourier-Plancherel 
transform for I.e.a. groups (§13). 

In other types of representation problems step (i) of Procedure 12.1 
may itself present difficulties: the definitions of the appropriate 
Hilbert space W and c.a.q.i. measure T(-) may not be obvious and 
may require a more or less deep analysis of the data. We shall illus­
trate this by considering spectral representations, in particular 
Stone's Theorem on the unitary representation of a l.c.a. group (§14), 
and Cooper's Theorem on the isometric representation of the semi­
group [0, 00) (§15). 

13. The Fourier-Plancherel transform for vectorial functions 

As in §6, let X be an (additive) locally compact abelian group with 
Borel family (B and Haar measure /z, and let X be the (multiplicative) 
character group of X with Borel family (B and dual Haar measure jtt. 
Let (Bo, (Bo be the ô-rings consisting of Borel sets of finite Haar mea­
sure. Let further, 

(i) W be a separable Hilbert space over C; 
(ii) £2tW = L2(X, (B, M; W), £itW = Li(£, &,fl;W); 

(13.1) (iii) £2,C = L2(X, (B, M; C), £2,C = L2(X, (B, p; C); 
(iv) £ & rj be the FP £2,c- & £>2,c~basic c.a.o.s. measures over 

(X, (B, A) & (X, CB, M)> respectively, cf. (6.2), 6.4. 

Next recall the Af-notation used in 10.13 and 10.32(v): 

VJBGèo & VwG W, {Mi(Ê)}(w) = wö( - ) , 

(13 2) 
VB G (Bo & Vw G W, {Mn(B)} (w) « w*a(• )• 

Our Them.10.33 enables us to derive readily the F P transform 
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theory for the spaces £*,w, £z,w from the corresponding theory for 
£>2,a £z,c outlined in §6 and given fully in [32]. First, from Theem. 
10.33(b) and (6.6), (6.7), 

(13.3) 

V / G £2 ,c & Vw G W, f Mn(dx){wf(%)} = *£>ƒ(•), 
Jx 

Vg G &2,c & Vw G W, I Mc(da){wg(a)} = w|(-) , 

and this, cf. (12.2), indicates the relevancy of the measures M^ Mn 

for F P theory. Next, from Thms. 6.4 and 10.33(b),(c) we see at once 
that 

Mz is a W-to-£2,w basic c.a.qd. meas. over (3t, (B, filw), 
(13.4) 

Mv is a W-to-$j2,w basic c.a.q.i. meas. over (X, (B, juiV). 

This crucial result when combined with Thm.10.8 and Cor.10.9 in 
turn shows at once that 

(a) The correspondence Xri:f—>fxM1l(dx)f(x) is a unitary opera-

(13 SÏ tor °n £*'w °nt0 £2tW' 
(b) The correspondence Z^:g-^fxM^(a)g(a) is a unitary opera­

tor on £2,w onto £*%w. 
We now assert the following corollary: 

13.6. COROLLARY. The operators 2 „ 2$ of (13.5) are inverses, i.e. 

PROOF. Grant for a moment that 

(I) VAG&o, X*o{Mx(A)} ~Mi(A). 

Then from Lma. 10.13(b), (I) and Lma. 10.12(b), VgG^a.Tr, 

2,*0?) = S,*{ ƒ # * ( * * ) « ( « ) } = f Mt(da)g(a) = 2 t(g), 

as desired. Hence it only remains to prove (I). 
Let ÂE&ot w&W, and let, cf. (8.11), 

(1) V£ G (Bo, t&) - JW*) = lff(?)*(wxD. 

Then on the one hand by Thm.l0.17(b) 

(2) df/dp = 2! *(«**) - {2*oMx(A)}(w), a.e. (/.). 
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But on the other hand, 

f(£) = {l£,(B)*Mx(Â)}(w) = w(xî, VB)£2,C by 10.33(a) 

= w(£i, XB)£2tC = I « ' Ö W M W , by (6.3) 
J B 

and so 

(3) #/<J/i = wö( - ) =rf Jf | (4)(w), a.e. 0*). 

From (2) and (3) we get (I). 

13.7. DEFINITION. The operator 2„ of (13.5) w called the (direct) 
FP transformation on £2,w onto £2,w- We call 2„(/) the direct FP 
transform of ƒ in £2tw and denote it by ƒ. We call 2$, i.e. 2*, the 
(indirect) FP transformation on £2fW onto £2,w. We call 2$(g) the 
indirect FP transform of g in £2,w, and denote it by g. 

According to this definition, the F P transforms are given by the 
explicit formulae: 

V/ G £2,w, ƒ = ƒ M,(dx)f(x), 
(13.8) ^ X 

y g G £2,w, g = I Mt(da)g(a). 
J x 

The relation between these formulae and (6.6), (6.7) is clear from 
(13.3): 

Vf&£2,c & Vw£W, {«ƒ(•)}* = «;ƒ(•), 

VgG£2.c & V ^ G P F , {w«(-)}~ = «£(•). 

From the unitarity of the transformation 2 , we get at once the 
Parseval and Bessel identities: 

(13.10) V/, g E Zi.wif, ghitW = (ƒ, g)Kw, I ƒ k w = I / K r -

The first of these, expanded out, asserts that 

f (ƒ(*),*(*))„*»(<**) = f (ƒ(«), *(a))„0(*O. 
«̂  X ^ X 

The following analogous result for ƒ in «C2tTF but g in <£2,c is proved 
first for (Bo-simple ƒ by using (13.9), and then for any ƒ in £2,w by the 
usual limiting argument: 
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VfEüt.W & V^G£2,C, f(-)gF)££l,W & 

(13.11) 
ƒ f{oo)g{x)n{dx) = fj(a)Ka)fi(da). 

From (13.8) a routine derivation using the Substitution Rule 10.28, 
the shift property [32, (4.2)] of the F P measures and Lma. 10.12 
yields the corresponding property of the F P transforms, viz. 

13.12. TRIVIALITY (SHIFT PROPERTY). 

(a) V/ G £ttW & VxEX, (rx/r = [*, •]ƒ(•), 

(b) V£ G £*,w & Va G X, (Tag)~ = [•, «]*(•), 

where r«, r a are the translation operators on <£2,w, £2,TT.37 Briefly, 

V# G -X"& Va G -X*, Ta? == Sç o M[x,.] o S„ T« = 2 , o MfT^j o Sg. 

As in the scalar case (cf. [32, (5.8)]), we have explicit differential 
formulae for the F P transforms: 

13.13. COROLLARY (DIFFERENTIAL FORMULAE). 

(a) Let VfEZz.w & VJ3G(Bo, tf(ê)=4Mi(ê)*(f); then dt,/dpL=f 
ax. (£). 

(b) Let VgE&.w & VSG&o, fa(B) = Aff(J5)*(g); then #,/<*/*=* 
ax. (/x). 

PROOF, (a) Since ƒ=ƒ, therefore from (13.8) and Thm.10.16(a), 

tt(Ê) = MAê)*{ftM£da)Ka)} = fjMKia), 
from which (a) is immediate, (b) is proved similarly. Bi 

Next suppose that the groups X, £ have the Lebesgue property, 
i.e. (X, <B) and (X, (B) are Besicovitch spaces with respect to the Haar 
measures /i, fi (cf. 2.5). Then the equality in 10.33(d) shows that the 
differential formulae in 13.13 take on the form: 

(13.14) 

V/ G £2,ir, ƒ (a) = lim — r ~ I £fia(x)f(x)ii(dx), a.e. (A), 
# a -« #(#«) J x 

VgG^2.TF, g(*) = Hm ——- Li|yfa)«(a)A(rfa), a.e. (/*). 
JT.-n ^(iV*) J X 

w I.e., V / e & i r & VyEX, (r^(y)-<f<y+*); 
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I t is also easy to show that for any l.c.a. group X, the F P transform 
is the £2,TF-extension of the £i,pr-Fourier transform, the latter being 
defined in the obvious way as a Bochner integral: 

13.15. COROLLARY, (a) Iff&Lir\Lt(X, <B, MÎ W), then 

f(°d — I ƒ(#)[#, a\ii{dx), a.e.flonX. J x 

(b) If g(ELirM2(X, &, fi; W), then 

g(*) = I g(*)[x, ot]fi(da)f ax. ix on X. 

PROOF, (a) Let ƒ G L ^ Z ^ X , (B, jit; W)=*£i,wr\£%,w and let 

\fB G (So, MB) = Mz(B)*(f). 

Then, in view of Cor. 13.13(a), we need only show that 

(I) ( * / / * ) ( « ) == f f(x)[x,a]fx(dx). 

Now by Thm.l0.33(d) and (6.2) 

(1) MB) = ƒ ^)f(x)fi(dx) = ƒ { ƒ [*, a ] A ( ^ ) | ƒ(*)*(<**). 

But since g G<£I,TT, [ •, — ] is bounded, and j&(J§) < 00, it easily follows 
that 

[ • , - ] ƒ ( • ) G L i ( X X B , ( r ( ( B X A ( B ) , M X A ; n 

Hence Fubini's Theorem for Bochner integrals can be applied, and 
this yields 

MB) = ƒ . { ƒ [x,*]KxMdx)fKd*)> 

from which (I) is immediate, 
(b) is proved similarly. B 

The last corollary in turn yields for c-compact X a limiting expres­
sion for the F P transform reminiscent of the classical case: 

13.16. COROLLARY. Let X be cr-cotnpact. Then 

V/GJBa.w, / = l i m f ƒ(*)[*, -J/*(<fo) 
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where (Cn)î is any sequence of precompact sets in (B such that CnQCn+i 
and \JiCn~X. 

PROOF. L e t / £ < £ 2 , T F . Then fxcnG£2,w, and therefore by (13.8) 

(fxcnV = f Mn(dx){f(x)XCn(x)} = f Mn(dx)f(x) 

(1) 
• I Mv(dx)f(x) = ƒ, as n —» oo. 
J x 

But since the support oîfxcn is inside the precompact set Cn, therefore 
fxcnŒ£2,wf^£i,w, and so by the last corollary, for almost all a (p. 
measure), 

(2) (fxcnT(oc) = I /0*0xcn(#)[*, a]/x(^) = I ƒ(*)[#, a]ix{dx). 
J X J Cn 

The desired result is immediate from (1) and (2). fl 

We conclude this section with the enunciation of the Paley-Wiener 
Theorem for functions with values in W. We shall take for granted 
the notion of the Hardy class i72(A+; W) of functions ƒ+ on A+ to Wt 

where A + C C is the upper bank of R, and the result that every such 
f+ has a boundary-value ƒ, defined a.e.(Leb.) on R and such that 
fEL2(R; W). 

13.17. THEOREM ( P A L E Y - W I E N E R ) . Let 
(i) L2([0, «>); W) = {f:fEL2(R; W) & / = 0 on ( - « > , 0 )} , 
(ii) l5+(-R; WO = {ƒ: ƒ w tóe 6»dry. ra/«e of a f+ in H2(A+; W)). 

Then / G i 2 ( [ 0 , oo); WO iff J=&i(f)eiF (R;W)-

14. Spectral representations 

This section has three parts A, B, C. In part A we shall review how 
Stone's Theorem for a unitary representation (Ux, xÇzX) of a I.e.a. 
group X can be treated from the standpoint expressed in §1 by 
deriving it from the Krein-Milman Theorem. Stone's Theorem yields 
a spectral measure E(-) for such unitary groups and hence also for 
their infinitesimal generators, i.e. self adjoint operators. The problem 
of representing such groups and operators by multiplication operators 
on L2 spaces is thus reduced to that of similarly representing the mea­
sure E(-). In part B (Thm. 14.12) we shall obtain an explicit repre­
sentation for E(- ) of this sort by following Procedure 12.1. In part C 
we shall deduce from this result explicit representations of the same 
sort for unitary groups and self ad joint operators. 

file:///JiCn~X
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A. Let X be a locally compact abelian group. I t is known that the 
continuous characters of X are extreme points of the (weak* closed) 
convex set K of complex-valued, continuous, positive definite func­
tions ƒ on X such that | ƒ | «, g 1. This crucial fact shows that Bochner's 
Theorem for such ƒ is a special case of the Choquet-integral version 
of the Krein-Milman Theorem, cf. [40, p. 119-]. From Bochner's 
Theorem we get the following general form of Stone's Theorem in a 
fairly straightforward way, cf. [41, pp. 385-392]: 

14.1. STONE'S THEOREM (FORM I). Let 

(i) X, X be dual Lea. groups, [x, a] be as in §6, and (B be the v-alge­
bra of all Borel subsets of Jt and their complements,*8 

(ii) (Ux, xÇEX) be a strongly continuous group of unitary operators 
on a (complex) Hubert space 3C onto 3C. 

Then there exists a unique spectral measure E(-) for 3C on (B such that 

VxEX, U,= f [x} a]E(da). 

Since to every selfadjoint operator H from 3G into 3C corresponds to 
a group (Ut, t^R) of unitary operators on 3C onto 3C having iH as in­
finitesimal generator, the spectral theorem for selfadjoint operators 
is an easy corollary of the X~R case of 14.1. These theorems are thus 
provable in a way which accords with the viewpoint advocated in 1.1, 
and we may use them freely. 

We are concerned, however, with Stone's result as a representation 
theorem, i.e. with a version such as the following: 

14.2. STONE'S THEOREM (FORM I I) . Let (i), (ii) be as in 14.1. Then 
there exists an index set J and indexed families (3Cy, .ƒ£.ƒ), G*/> jEJ), 
(5y, JÇÎ.J) of sub spaces, measures and maps, satisfying: 
(1) 3C=Z;ej3Cy, 3C/±3C*, j , kEJJ^k, 
(2) VxEX &VJEJ, tf*(3Cy)C3Cy, 
(3) fXj is a bounded, nonnegative c.a. measure on (B, 
(4) Sj- is a unitary operator on L2(X, (B, My; C) onto 3Cy such that VxÇEX, 

Rstr.jjCyC/* = 5yoM[a!|.]o571, where M[X,.\ is the operation of 
multiplication by [x, • ]. 

NowThm. 14.2 can be proved by applying the following theorem 
to the spectral measure £ ( • ) obtained from Thm. 14.1: 

14.3. THEOREM (SPECTRAL REPRESENTATION I) . Let £ ( • ) be a spec-

38 Thus, (ê now has a connotation different from what it had in §6, where it stood 
for the family of Borel subsets of X, i.e. the o-ring generated by the compact subsets 
o f X 
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tral measure for 5C on a a-algebra (B over a set A. Then 3 an index set J 
and indexed families (3Cy, jÇzJ), (/xy, JÇE.J)* (Sj> jÇzJ) °f sub spaces, 
measures and maps, satisfying: 
(1) 3C=Zye,3Cy, 3Cy±3C*f j , kEJ, j*k, 
(2) VJ3GCB & VjG/ , E(.B)(3Cy)C3C/, 
(3) /Xj is a bounded, nonnegative, c.a. measure on (B, 
(4) Sj is a unitary operator on L2(A, (B, /*ƒ ; C) onto 3Cy such that Y£Ç:(B, 

Rstr.WjEÇB) =SjoMXBoSj~1 where MXB is the operation of multi­
plication by the indicator-function XB-

Indeed, on applying Thm.14.3 with A = X and (B = (B to the spec­
tral measure £ ( • ) obtained in 14.1, we can get Thm. 14.2 by using 
the operational calculus. Similarly, from Thm. 14.3 with A = R 
and (B = the Borel family over R, we can get the representation, corre­
sponding to 14.2, of a self ad joint operator H from the Spectral 
Theorem for H. 

B. Our aim is to prove not Theorem 14.3 but rather a more explicit 
and concise version of this theorem. The procedure for accomplishing 
this usually adopted in operator-algebras, is to solder the measure-
spaces (A, fij), and so get a single nonnegative measure \x over a ularge 
space" ï , cf. Segal & Kunze [45, p. 89-] . But Cramer's fundamental 
paper [8] on matrix-valued distributions, and the ensuing develop­
ment of the theory of multivariate random processes and fields, cf. 
[29], [51 ], suggest that it would be better in most respects to view 
the jjLj as components of an operator-valued measure M over A itself?9 

Accordingly, our goal will be to formulate Thm. 14.3 in terms of 
integrals involving a c.a.q.i. measure for which the nonnegative 
hermitian measure is built from the /xy by following Procedure 12.1. 
The key to this lies in the following very simple lemma, which says 
roughly that the restriction of a spectral measure is c.a.q.i. with re­
spect to a certain nonnegative hermitian measure built from it: 

14.4. LEMMA. Let 

(i) E(') be a spectral measure for 30, on a cr-algebra (B over a set A, 
(ii) W be any subspace of 3C, and Pw be the orthogonal projection on 

3C onto W, 
(iii) £ 0 ( - )=Rst r .Tr£( - ) , M*{-)=Pwo{E*{-)). 

Then 
(a) Mo(-) is a strongly c.a., W-to-W, nonnegative hermitian, contrac­

tion-valued measure on (B 3 M0(A) = Rstr.wl; 
39 Indeed, the factorization theorems proved in prediction theory for the (operator-

valued) Radon-Nikod^m derivatives of such measures, cf. e.g. [34], have stimulated 
new work in operator algebras, cf. e.g. Arveson [l, §4]. 
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(b) E0(') is a W-to-30,, c.a.q.i. measure over (A, <B, M0). 

PROOF, (a) Let Z>£(B. Then by (iii), M0(B) is a continuous linear 
operator on W to W. I t is also easy to check from (iii) that Vw, w ' E W 

(Mo(B)(w), w')w = (E{B)(w), E(B){w'))w = (w, M0(B)(w'))w. 

From this it follows at once that MQ(B) is hermitian and nonnegative 
definite» I t is a contraction, since 

Vw G W, | M o(B)(w) \w = | PwE(B)(w) \w S \w \w. 

Also, VwÇzW, MQ(A)W=PWE(A)W = W, and so Mo(A) = Rstr.wI-
Finally, M0(-) is s.c.a., since £ ( • ) is s.c.a. 

(b) Let A, i?£(B. Clearly E0(A) is a continuous linear operator on 
W to 3C, and Vw, w'&W, 

(Eo(A)(w), Eo(BKw'))x = (E(A)(w), E{B){w'))«> 

~{E(AKB)(w),wr)K 

= (E{Ar\B)(w),Pw(w'))K 

= (Mo(Ar\B)(w),w')w. 

Hence, cf. (8.3), we have (b). H 

To discuss the basicness of the measure Eo(') of 14.4 we must recall 
the following concepts from spectral multiplicity theory: 

14.5. DEFINITION. Let E be a spectral measure f or a {complex) Hu­
bert space 5C, defined on a a-algebra (B over a set A. Then 

(a) a subset G of 30, is called a generating set of E(*)fiff 

®{E(B)(G):BE®} =3C; 

(b) the minimum of the cardinality of all such subsets G is called the 
(total) multiplicity of £ ( • ) . 

I t follows at once from 14.4(b) that 

(14 6) ^e CM'Q^' meas^re E0(') of 14.4 is W-to-3C basic, iff W = ©(G), 
^ * ' for some generating set G of E{-). 

Spectral multiplicity considerations thus enter into our theory in re­
gard to the basicness of the c.a.q.i. measure E0(-)- But they also con­
front us in another significant way. To be able to use Eo(') suc­
cessfully for integration (§10), we must know beforehand that 
Li(A, (B, Mo; W) is definable as a Hilbert space (§9). Thus arises the 
question: 
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QUESTION. For what generating sets G of E(-) will the measure M0(• ) 
of 14.4 be adequate according to Criterion 9.9? 

If, for instance, we choose the largest G, viz. G = 3C, in which case 
obviously E0 = E = M0, we get L^k, (B, E ; 3C), and it is not clear what 
this symbol means. We shall now show that a careful minimal choice 
of G yields an adequate MQ(-). This will be done by appealing to the 
Hellinger-Hahn Theorem. Indeed, from our present standpoint the 
significance of this theorem lies in its ability to perform this measure-
theoretic role. The following version based on Dunford and Schwartz 
[ i l , I I , p . 914-] is needed: 

14.7. HELLINGER-HAHN THEOREM. Let 

(i) E be a spectral measure f or 3C on (B, 
(ii) q = dthe multiplicity of ES ^o, {cf. 14.4), 
(iii) V x G ( f C , s , = d © { £ ( 5 ) W : 5 G ( B } , /*.(•) = M | £ ( 0 ( * ) | \ 
(iv) J be the initial segment of cardinality q of the naturally ordered 

set of positive integers. 
Then 3 a sequence (jSy)yej of vectors in 3C such that 

(a) 3 C = I X . , S^-LS**, |j8y| = 1 , j,kEJ, j * k; 

(b) Vj G / , M*(') = M*(Ay H •)/*ƒ, 

where AjÇ:(& & A*CAyCAi=A, V;, £ E / , * ^ i , awd aj=dVp1(A.j)>0. 

14.8. DEFINITION. L ^ (i)-(iv) &e as iw 14.7. r f en we site// ca// a 
sequence (/3y)ye/ satisfying (a) awd (b) a Hellinger-Hahn (H.H.) se­
quence for E. /xft «rc'ZZ ôe caZZed ite dominant measure and (Ay, j £ J ) ite 
carrier sequence. 

I t is known that the range G of a H.H. sequence (j3y)yej for E( • ) is a 
minimal generating set for E( • ), and the sequence itself is an o.n. basis 
for the separable subspace W=d ©(G). Since | /3y| = 1 , all /%(•) flre 
probability measures on (B. Furthermore, cf. [ i l , II , p. 916, Thm.lO] 
for two H.H. sequences for the same E(*) the dominant measures 
are mutually absolutely continuous, and the symmetric differences 
of corresponding carriers have zero dominant measure. 

The following theorem shows that for the subspace W spanned by 
a H.H. sequence for E(-)> the measure M0(-) of 14.4 is adequate, and 
the c.a.q.i. integral is a convergent sum of c.a.o.s. integrals: 

14.9. THEOREM. Let (i)-(iv) be as in the Hellinger-Hahn Thm.H.7. 
(v) (fij)jej be a H.H. sequence f or E ( - ) . 

(vi) w=«@{ft:ye/}, 
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(vii) Eo(.)=Rstr.wE(-)t Jlf0(-) = iVo{£ 0 (0 } (cf. 14.4). 
Then 

(a) £ 0 w # W-J0-3C &asi£, c.a.q.i. meas. over (A, (B, ikf0) ; 
(b) VBG®, ikf0(5) = X^ie/ toj(B)Pfip where P^ is the orthogonal 

projection on W onto the 1-dirnensional sub space ©(&•), and where 
strong convergence is understood for infinite J; 

(c) the measure MQ is adequate) hence £2,17 = <* ^(A, (B, M0; W) is a 
Hilbert space, and the linear manifold S (A, (B; IF) of (^-simple f unctions 
on A to W is e.d. in it; 

(d) V 0 G £ w & V 5 e ( B , 

f JS0(W(X) « E f (*(X), fàwEoidXfà. 
J B jeJ J B 

PROOF, (a) By 14.4(b), £ 0 is a W-to-3C, c.a.q.i. measure over 
(A, (B, Mo). Now cf. 14.8 et seq., by Thm. 14.7(a) the range G of 
(Jij)jej is a generating set for -E(-), and by (vi), W=<&(G). Hence by 
(14.6), Eo is TF-to-3C basic. 

(b) Let 5 G(B. Then 

V; G / , Mo(B)((3j) = P * {£(£)&} G TF. 

Since, cf. 14.8 et seq., (ft)ye/ is an o.n. basis for W, it follows that 

Vi G / , Jf o (W/ ) = E (E(B)ph ft)A, 

= (£(£)&, &•)&-, since fy J. S„à 

Hence Vw£W, it follows on using the continuity of Mo(B) that 

Mo(B)(w) = M»(B) i £ (W> &•)&! = E (W, &)«,,(*)& 

,'eJ 

This yields (b). 
(c) follows from §9, since M0 satisfies (9.16) and (9.20) by dint of 

(b) and 14.7(b). 
(d) clearly follows from Thm.l0.32(d) on setting r ( - ) = £ 0 ( 0 - • 

Theorem 14.9 completes steps (i) and (ii) of Procedure 12.1. Our 
Isomorphism Theorem 10.8 now tells us that 

the correspondence 2 : <t>—> I Eo(dX)<K\) 
(14.10) J A 

is a unitary operator on £>2tw onto 3C. 
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We next assert that this 2 carries the operation of multiplication by 
XB on £2,w into the operation E(B) on 3C: 

14.11. LEMMA. Let 2 be defined as in 14.10. Then 

VB G (B, E(B) = XoMXBoI,-1. 

PROOF. Let 5£(B and <f>E£2tw- In view of (14.10) it will suffice to 
show that £(5){S(0)}=S{x 5 ( - )0( ' )} , i.e. 

(I) E(B) | ƒ JEo(dX)*(X)| = ƒ £o(dX){xn(X)*(X)}. 

Case (i). Let 0 = Xa *̂XAfc, ^ G T F & ^U£(B. Then from Definition 
10.4, the linearity of E{B) and its commutativity with E(Ak), we get 

LHS(I) = E(B) ( J2 Eo(Ak)(wk)\ = £ £(£ H ,4*)M. 

On the other hand, from the linearity of our c.a.q.i. integrals, cf. 
10.3(c), 

RHS(I) « ƒ Eo(d\) | E x * n ^ K } 

î ^ A 

= E f x*ru*00£o(<*A)(«*), by 10.10 
1 J A 

« Y,E(B(^Ak)(wk), 
ï 

where the last step follows from the operational calculus. Thus (I) 
holds in Case (i). 

Case (ii). Let <f> = limn-00 <j>n in &2,w, where $„ is as in Case (i). Then, 
cf. Definition 10.6, 

LHS(I) = E(B) \ lim f E0(d\)^n(\)\ 

= lim £(5) / f E0(<*X)*.(X)| 

= lim f Eo(dX){xBÇK)4>nQO}, by Case (i), 

- RHS(I), 
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where the last step follows from 10.3(e), since X B ( ' ) 0 ( ' ) — 

limn̂ ooXiîC •)#»(•) m £z,w* Thus (I) holds in Case (ii). 

To sum up, we have proved the following theorem which is an ex­
plicit and concise substitute of the spectral representation 14.3: 

14.12. THEOREM (SPECTRAL REPRESENTATION I I) . Let 
(i) E(-) be a spectral measure for 30, on a a-algebra (B over a set À, 

such that q — d multiplicity of E(*)SN0> 

(ii) (j8y)/€/ be a Hettinger-Hahn sequence f or £(•)> and 

W = <S{fr:jej}, «ƒ.14.8, 

(iii) EQ(-)=éRstr.wE(-), MO(-)*=PWO{EQ(-)}. 

Then the correspondence 2:c/>—»/VEo(dX)$(X) is a unitary operator on 
L2(A, (B, M0; W) onto 3C such that 

VB G (B, E(B) = 2oMXBo IT1. 

14.13. REMARKS. 1. The ingredients W, E0, M0 in the last theorem 
are constructed explicitly from the given spectral measure E(-). The 
subspace W is not unique, and so neither are the measures E0 and 
M0. But W, E0, MQ are determined up to unitary equivalence, and 
this is the most that our data will allow. Thus Thm. 14.12 is as 
explicit as possible, apart from being more concise than 14.3. 

2. Thm. 14.12 shows incidentally that F(-), where 

F(B) ~ MXB, B e ® , 

is a spectral measure for the Hilbert space L2(A.t (B, Mo', W)> when W 
and Mo are defined as in the last theorem. 

3. The spectral measure E(>) itself is the spatial integral spectral 
measure Q(-)for the c.a.q.i. measure JEO(-)- This is clear on combining 
14.11 and 10.25(c), or alternatively on combining the equation (I) 
in the proof of 14.11 and 10.25(b). 

C. We shall now turn to the explication of the representation for 
(Ux, xÇzX) given in 14.2 and of the corresponding representation for 
a self ad joint operator: 

14.14. STONE'S THEOREM (FORM III). Let 
(i) (£ƒ*, #G-X") and E(-) be as in Theorem 14.1, and 

q = multiplicity of £(•) S ^o, 
d 

(ii) (J3j)sej be a Hellinger-Hahn sequence for E and 



i97o] QUASI-ISOMETRIC MEASURES 511 

^ = © { f t : i G / } , cf. 14.8, 

(iii) E0(-)=d Rstr.wE(.), Mo(-)~dPwo{E0(-)}. 
Then the correspondence 2j:<t>—>f$Eo(da)(l>(a) is a unitary operator on 
L2(X, à, M0; W) onto X such that 

Vx G 3C, Ux = 2 o M[«,.] o S"1. 

PROOF. By Thm. 14.12, the correspondence 2 just defined is a 
unitary operator on L2(^", (B, M0; W) onto 5C such that 

(1) VB £ (B, E(B) ~2OMXBO S"1, 

Now let x £ X . Then by (1) and the operational calculus, cf. Remark 
14.13(2), 

(2) j ^ [x, a]E(da) = 2 o ƒ [*, a]MXda o S ^ = 2 o i f *,,., o S-*. 

Since by Thm. 14.1, LHS(2) = Ux, the proof is over. | 

In very much the same way we deduce from Thm. 14.12 the 
following analogous result for self ad joint operators: 

14.15. THEOREM (SPECTRAL REPRESENTATION FOR S.A. OPERATOR). 

Let 
(i) H be any self adjoint, linear operator from 5C to 5C, and E(*) be its 

associated spectral measure on the a-algebra Bl(R) of Borel sets, 
(ii) q~d multiplicity of E(-) ^ &Q, 
(iii) (j8y, jÇîJ), W% E0t Mo be defined in terms of E(-) as in the last 

theorem. 
Then the correspondence 2 : <f>~>fRE0(<Ik)(f>(\) is a unitary operator on 

Lt(R, Bl(R), Ma; W) onto 3C such that 

E = 2 o ilf/(.) o S""*1, where 7(X) = X, X G R. 
d 

In conclusion we remark that Thm. 14.14 is as explicit as possi­
ble. I t is more concise than 14.2, and reveals a closer connection to 
14.1 than does 14.2. Indeed, the very definitions of W, E0, M0 involve 
the spectral measure E of Thm. 14.1, which as mentioned in part 
A may be thought of as a barycentric operator-valued measure stem­
ming from the convexity underlying the situation. Similar remarks 
apply to 14.15. 

15. Linear stationary causal systems and Cooper's theorem 

Many linear problems involve a Hubert space 5C and a strongly 
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continuous group (Utl t^R) of unitary operators on 5C onto X. If for 
#£3C we interpret Ut(x) as being the state x% a t instant t of a system 
whose initial state is x> then | xt\

2 and (#«, yt) are time-invariant. This 
justifies calling such a system stationary. Stone's Theorem 14.1 for 
X = R provides a useful tool for the analysis of linear, stationary sys­
tems. 

In an important subclass of linear, stationary systems there exist 
subspaces 3C0 of 3C which are invariant under the semigroup (Utt 

tSO), i.e. 

(15.1) Z7f(0Ca) £ 3Co, Vt ^ 0. 

As this signifies a discrimination of past from future, we may call such 
systems causal.40 

15.2. EXAMPLES. The closely related theories of (i) the Hardy class 
jff2, (ii) prediction and (iii) scattering exemplify linear, stationary, 
causal systems. In (i) 3Z~L%{R), Ut is multiplication by e-t where 
et(s)=eit8, and 3C0 = d Ll+(R), i.e. the set of functions ƒ G 3C which are 
boundary values of functions ƒ+ in the Hardy class H% on the upper 
bank of R. In (ii) 3C=d ©(x*, tÇzR) is the Hilbert space generated by 
a stationary stochastic process, Ut is such that Ut(xa)=Xt+8, and 
5Co=d &(xt, t^O), the so-called "present and past space" of t = 0. In 
(iii) 3C is the space of Cauchy-data of the wave equation with obstacle 
in Rq, g è It completed in the energy norm, Ut carries the initial data 
(fo, go) into the data (ft, gt) a t instant t, and 3C0 is the so-called "in­
coming subspace," i.e. the set of all initial data (/0, go) such that for 
all t^0f ft vanishes in a (fixed) neighborhood of the obstacle. I t is 
easy to verify (15.1) in each case. 

Now suppose that we have a linear, stationary, causal system, and 
let 

(15.3) Vt è 0, St = Rstr. ut 
d 3C0 

Then by (15.1), (St, t^O) is a strongly continuous semigroup of iso 
metrics on 5C0 into 3Co. The following theorem of Cooper [7], which 
gives the structure of such semigroups, therefore plays an important 
role in the analysis of linear, stationary, causal systems: 

15.4. COOPER'S THEOREM. Let (Se> t^O) he a strongly continuous 
semigroup of isometries on a {complex) Hilbert space 5C into 3C. Then 
there exists a sub space 3C» and indexed families (SfTCy, jÇ~J)f (Zj,jÇzJ) 

40 Causality is used here in the sense of temporal anisotropy, and not of course in 
the narrower sense of determinism. 
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of subspaces and maps, respectively, such that 
(1) x = Xoo+]£ye^;> xw±9frcy±9frcjb, j , k£J, j?*k, 
(2) V/^0, 5«(3C«,)£^C» & 5e($ïïly)C2fTly, 
(3) V/ ̂  0, Rstr.3Coo»S< is unitary on 3Coo onto 3C*,, 
(4) V / G / , £y w a unitary operator on Z^O, <») <W/Ö 9TCy s^c& / t o 

V* à 0, 5i = ZjoatoZ1,; where (<ref)(t) = 

To get the SflZy Cooper first obtains vectors ft- in 5C by a selection 
procedure reminiscent of the Hellinger-Hahn Theorem.41 For the 
analysis of linear, stationary, causal systems what is needed is a 
version of his theorem free from any dependence on a nonunique 
selection of vectors. Our aim is to get such a version by following 
Procedure 12.1. To carry out step (i) of 12.1 we shall appeal to the 
corresponding result for the semigroup (Vn, n^O) where V is an 
isometry on 5C into JC, and then make a transition from the discrete 
to the continuous, cf. 1.3. In the discrete case the result we are seek­
ing is in essence a mere reformulation of the following fundamental 
result, cf. Halmos [14, Lma. l ] : 

IS.5. THEOREM (DISCRETE WOLD DECOMPOSITION). Let V be an 

isometry on a (complex) Hubert space 3C into 3C. Then 3 a unique sub-
space W such that 

00 00 

3C = PI F*(3C) + 23 V*(W), 
_ 0 n-0 

and 
oo 

fi Vn(3C) ± V>'(W) -L Vk(W), j > k è 0. 
0 

This Wis {V(3Q)}\ 

I t is easy to see that the restriction of V to 3C0O = dn^0Fn(5C) is 
unitary. Also, on letting ^(S^o+î W) be the Hubert space of square-
summable functions on the set 9l0+ of nonnegative integers to the 
space W, it easily follows from 15.5 that 

n-0 

41 As Kallianpar and Mandrekar [19] have pointed out, Cooper's method in es­
sence amounts to constructing from each jfy, a c.a.o.s. measure &, and then taking îftlj 
to be the subspace of &, cf. 2.2(a). 

(0, 0 g t < c. 
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is a unitary operator on h(3lo+'t W) onto 5CP\5Ci, and V n ^ l , 
F n = S oa-n o S " 1 , where o*n is defined as in 15.4(4). Thus, in the 
discrete case the Wold decomposition immediately yields an explicit 
version of Cooper's Theorem. 

The last fact suggests that in the continuous parameter case as 
well, an explicit version of Cooper's Theorem may be derivable from 
a Wold decomposition established beforehand. Indeed, the equation 
in 15.5 strongly suggests for the semigroup {St, t^O) a Wold decom­
position of the form 

(1) X - PI S*(3C) + f"To(df)(W) 

where Wis a unique subspace of 3C and r 0 ( 0 a PT-to-JC, c.a.q.i. mea­
sure over ([0, oo ), (BM, jut), where jn is Lebesgue measure, and (&» is the 
S-ring of Borel subsets of [0, oo) of finite Lebesgue measure. In the 
announcement [28] we sketched a proof of (1). We shall now present 
this in a somewhat improved and systematized form. To avoid repeti­
tion let it be understood in what follows that : 

(i) {St, t^Q) is strongly continuous semigroup of isometries 
on a {complex) Hubert space 3C into 3C, 

(ii) 5Coo = n^05É(5C) & 3C0 = 3Ci, 
(iii) V=dI-2fZ e-'Stdt & W={F(3C)}V 2 

(15.6) (iv) (P is the prering of intervals (a, &], where 0 ^a <b < oo, 
(v) V(a,ô]G<P, T{a,b]=d{l/V2){Sb~-Sa~-PaStdt}, 

(vi) T0{') =d R s t r . ^ r ( - ) & Iw = dRstr.wI, 
(vii) V/âO, Rt=d St-I-Jl(t-s)S*ds. 

Our goal is to show that r 0(*) is a PF-to-X, c.a.q.i. measure over 
([0, °°), (BM, IJL{-)IW), where fx is Lebesgue measure, and then use 
Thm. 10.8 to get both (1) and the explicit version of 15.4, thereby 
carrying out Procedure 12.1. But the unrestricted set-function T(-) 
must first engage our attention. 

In the first place, the semigroup (15.6) (i) yields a continuous func­
tion 5(.) on [0, oo) to the vector space CL(5C, 5C) taken with the 
strong operator topology. Hence for 0 ^ a < & < oo, ƒb

a Stdt exists as a 
strong Riemann integral, which obeys many of the usual laws (cf. 
[18, p. 62-, Def. 3.3.1 & Thm. 3.3.4]). Hence T(a, b] is well defined 
by (15.6) (v), and it follows easily that 

42 Thus V is the Cayley transform of H, where iH is the infinitesimal generator of 
(St, t^O), and W is the so-called deficiency subspace of the semigroup. As Cooper 
showed in [ô], H is a maximal symmetric operator. 
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(< c 7 \ (a) T(-) is a finitely additive measure on (P to CL(3C, 3C), 
{lbJ)(b) Vt^O&VAEV, Sto{T(A)}-T(A+t). 

Furthermore, the equation in (15.6) (v) for T(-) in terms of St can be 
inverted to yield an equation for St in terms of T( • ) : 

15.8. LEMMA (INVERSION FORMULA). 

Vfl^O, Sa * - A/2 f r -T (ö , a + * ] * . 
J o 

PROOF. In view of (15.7) (b) we shall prove the result for a = 0, viz. 

ƒ> 00 

r-*r(o, *]<« = /, 
0 

and then apply Sa to both sides. By (15.6)(v)&(i), T(0, • ] is a 
continuous function on [0, oo) to the space CL(3C, 3C) taken with the 
strong operator topology. Hence, the function £~ ( , )r(0, • ] is likewise 
continuous on [0, oo) and therefore Riemann integrable on any in­
terval in (P. But from (15.6)(v) 

VUO, | 2X0, t] \B S I St\B + | I\B + f I 5.U* 
«J o 

Û2 + L 

I t follows that Jo e~~*7X0, /]<& exists as an improper i?-integral. Hence 
(A) is meaningful. 

Next, we observe that 

LHS(A) = f r* <St + / + f SsdsX dt 

/

oo /» oo / /» < \ 

é r ^ d / + / + I < J erW^fa> dt. 
By Dirichlet's formula the last term on the RHS is 

/

oo / /» oo \ /» oo 

< I ^-'5.*> ds = I 5 . e r ^ , 
and so cancels the first term, to yield 2" on the RHS, as required 
by (A). 

Finally, from (A) and (15.7) (b) 
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ƒI 00 

0 

ƒ» oo 

(r'T(a, a + t]dt. 
o 

Let us note that 

VX ç 3C & Va è O, 

@{S<(X):* i « ) = ®{r(e,rf](X) :(c,d] C [a, « ) } . 
(15.8') 

This is clear since on the one hand by (15.6) (v), we have V(c, d] 
C [a, oo ) and V# G -X", 

T(c, d](*) = (1/V2) J5d(«) - S.(«) - ƒ S,(*)<ft| 

G ®{S,(X): <=£«}, 

and on the other hand by the formula in 15.8, we have V i ^ a and 
V* EX, 

ƒ» 00 

e~*T(t, t+s](x)ds 
0 

E®{T(c,d](X): (c,d] C [*,«>)}. 

The next result we prove concerning T( • ) is chosen with an eye to 
establishing the quasi-isometry of r0(*) by appeal to Lma. 8.12: 

15.9, LEMMA. 

(a) 2T(0, a]*oT(0, b] = S^ - Ra*~ Rb, 0 ^ a < b, 

(b) 27(0, b]*oT(0, a] = £&!« - Ra - £&*, 0 g a < J. 

PROOF. The proof consists of a long but routine calculation. The 
following are the main steps. Let 0^a<b. Then using the relations 

$a*Sb ~ Sb—a & Sb*Sa = Sb—ay 

we find that 

(1) 2S,*or(0, c] = 

Sc_, - S<*- f S9ds - f S.*<fc, 0 g / < 
J o ^ o 

S.*<fc, 0 ^ c < I. 
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By(l) 

LHS(a) = V2 is* - I - fsfdX T(0, b] 

= iSi-a -S*- f S,ds\ - V2T(0, b] 

/

a r /• b—t /» t \ 

<St-t -St* - J S,ds - I S?ds> it 

/

6—a f /» b \ 

S.ds - <Sb- I - I S.dsV 

ƒ* a /» a /» b—t /» a /» t 

Sb-tdt+ I I S.dsdt+ I I Sfdsdt. 
Denoting the last 3 integrals by Ji, 7*2, J^, and using the rule of sub­
stitution, Fubini's Theorem and Dirichlet's formulae, we find that 

/• b /• a 

J i = I Ws , / s = I {a — s)S?ds, 
J b-a J 0 

ƒ• & /» 6—o 

(6 — ^)5«^ — I (& — a — s)S*ds. 
0 «* 0 

Inserting these expressions in (2) and simplifying we get (a), (b) 
follows on taking adjoints on both sides. | 

We now turn to the restricted measure T0(-). What concerns us 
is of course the product r0(0, &]#r(0, a], where # is the adjoint op­
eration for WP-to-tfC (not 3C-to-3C) linear operators. Obviously, 

(15.10) V4 G <P, To(A)* - PTTT(^)* = PwW)*, 

and therefore 

V4, B G (P, TQ(B)*T,(A) = PWT(B)*T(A)IW 

(15.11) 
- Rstx.irPir:r(J3)*r(;l). 

Combining 15.9 and (11.11), we get 

2T0(0, afT0(0, b] = Rstr.^ Pw{Rb-a - Ra*~ Rb}, 0 ^ a < b, 

2r0(0,ô]#r0(0, a] = Rstr.w Pw{Rb*-a ~ Ra-~ Rb*}, 0 û a < b. 

Next, we appeal to the fundamental result: 
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15.13. LEMMA (RELATION BETWEEN St AND Vn). 

(a) V^O, S«-a-/ + dim Z { ^ ( ^ T T ) E f * ) ^ ! » 

2^ r » - l ) - 1 

iT„ = < / F> 7, <wrf w iTn(5C) C F(3C). 
d rc+ 1 I » + 1 j 

ƒ» 00 

Li (2t)*~'Sdt, 
o 

where 

Lnif) = 2-f ( P > (w** Laguerre polynomial). 
d k-o k\ \k / 

PROOF. The proof is the same as that of the corresponding rela­
tions between Ut and Ve

9 given in [33, Lmas. 2.7, 2.8], where 
(Ut, tÇzR) is a strongly continuous group of unitary operators on 
3Conto3Cand F is defined as in (15.6) (iii), but with Ut instead of St. Bl 

The last lemma (a) immediately yields the following crucial 
theorem : 

15.14. THEOREM. 

(a) V*àO & V#£3C, St(x) = er'x+yh where yt£ F(3C) =* dW\ 
(b) PwSt » er'Pw & Rstr.jrS** « <r'iV. 

We can now assert the result we were after: 

15.15. THEOREM. 

(a) Va, 6 ^ 0 , T0(0, afT0(0, b ] « min {a, &} JV. 
(b) r 0 ( - ) is a W-to-3C, c.a.q.i. measure over ([0, <*>),(?, JU(-)-ZV)> 

wftere /x is Lebesgue measure. 

PROOF, (a) Let c^O. Then from the definition (15.6)(vii) of Re 

and the first equation in 15.14(b) we get 

PwRc ~ Pw <Se - I - f (c - t)Stdt\ 

(1) « <er« - 1 - f (c~ t)er'dt\ Pw - - dfV. 

Similarly, from (15.6) (vii) and the second equation in 15.14(b) we get 
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(2) Rstr.TF PwR* = - clw. 

Combining (1) and (2), we have 

(3) Vc ^ 0, Rstr.Tr PwRc = - clw = Rstr.jr PWR?. 

Using the relations (3) and (15.12) we find that for 0^a<b 

2To(0, a]#T0(0, b] = {-(& - a) + a + b}lw = 2alw, 

2r0(0, b]*T0(0, a] = {-(6 - a) + a + b}lw = 2aIw. 

This establishes (a). 
(b) By 15.7(a), To(-) is finitely additive on (P. In addition it satis­

fies the condition (a). Hence by Lemma 8.12(b) we have (b). 

We turn next to the subspace $TQ of the measure TV We first note 
that 

(15.16) %>0 = ®{St(W):t^ 0}. 

This follows a t once from (15.8') on setting X~W. Next, we notice 
that the equations in 15.13(a)&(b) yield the inclusions Ç and 3 
involved in the following useful identity: 

(15.17) VX C 3C, ®{St(X):t è 0} = ®{Vn(X):n ^ 0}. 

Finally, we assert a corresponding identity for the "remote" sub-
spaces of the St- and ^"-semigroups: 

15.18. THEOREM. 3C* = df)tzoSt(W) = rU0Fn(3C). 

PROOF. AS mentioned in [28, 3.2] a proof can be completed on the 
basis of the identities in 15.13(a)&(b) and the limiting behavior of 
the Laguerre polynomials Ln(t), as t —» <*>. But a shorter proof due to 
Nagy [37, p. 46] is also available. B 

We can now get our final expression for Sr0, by putting together 
these fragmentary results and appealing to the discrete Wold decom­
position. Thus, 

ST0 - ®{St(W)U ^ 0} by (15.16), 

= ®{Vn(W):n à 0} by (15.17) with X = W, 
00 

= Z V*(W), by 15.5, since VQV) are JL, 

= 3 C n | f l F n ( X ) i by 15.5 (decomposition), 

(15.19) = 3C H tit = 3C0 by 15.18 & (15.6)(ii). 
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By establishing Thm. 15.15 (b) and (15.19) we have completed 
the hard steps (i) and (ii) of Procedure 12.1. We can now appeal to 
the general theory in §§10, 11 to assert our main theorem: 

15.20. THEOREM (WOLD DECOMPOSITION & COOPER'S THM.) Under 
the assumptions (15.6) we have 

(a) r 0 ( - ) is a W-to-3Q,Q basic, c.a.q.i. measure over ([0, «>), (BM, 
ix(')lw), where /x is Lebesgue measure] 

(b) ƒ> 00 /% 00 

To(dt)(W), & 3CW J. 1 T(dt)(W); 
0 " 0 (c) the correspondence 2:<£—>/<5° TQ{dt)(j>{t) is a unitary operator on 

^ ( [ O , oo ) ; W) onto JC0, such that 

Vt è 0, Rs t r ^S* = S o <rt o 2r\ 

where at is as in 15.4(4). 
(d) V/ ^ 0, Rstr^St is unitary on 3CW onto SC*,. 

PROOF, (a) is just a restatement of 15.15(b) and (15.19).(b) 
follows from (a) and Cor. 10.9 (a). The first part of (c) follows 
from (a) and Thm. 10.8. The second part of (c) follows from Thm. 
11.10 (a), since by (15.7) (b) the measure T0 is stationary with shift 
semigroup (S , t^0). 

(d) Since St is an isometry, to prove (d) we have only to show that 
St carries 3C*, onto JC*. Let / ^ 0 . Since St is one-one, 

(i) sM j St in Ss(w)\ = n s8+t(K). 

But, since 5a+«(JC)C5«(5C), we have 

(2) RHS(l) C fl S8(3C) = 3C*. 

On the other hand, 

(3) RHS(l) = fl SW(X) 2 fl SM(3C) = JCW. 

By ( l)-(3) , St(W«>) =5Cco as required. • 

Hitherto we have treated the set L2(E; W)> where EQR, e.g. 
£ = [0, oo), as comprising functions on E to W. In certain cases, e.g. 
when St is obtained as in (15.3), it is convenient to redefine this 
symbol by 

(15.21) L2(E; W) = {<£: <t> G L2(R\ W) & <t> vanishes ax. on R\E\. 



1970] QUASI-ISOMETRIC MEASURES 521 

Then by (11.13) the equation in 15.20 (c) can be written 

(15.22) Vt ^ 0, Rs t r . ^5* = Sor^oS- 1 , 

where TH is translation through h\ i.e. (n#) (0 =$( /+&), hJÇzR. 
The correspondence 2""1 is therefore called the translational repre­
sentation of the restricted semigroup (Rstr.^S*, t*zO). An application 
of the F P transformation and the Paley-Wiener Theorem yields a 
corresponding spectral representation: 

15.23. THEOREM (SPECTRAL REPRESENTATION). Let 
(i) 2 be as in Theorem 15.20(c), 
(ii) 2 = d 2 o Z7, where Z7 = d2, is the FP transformation on L^iR; W) 

onto L2(R\ W), cf. 13.7, 
(iii) Z%+(R; W) be as in the Paley-Wiener Theorem 13.17. 

Then the correspondence 2 is a unitary operator on L%+(R\ W) onto 
3C0 such that 

Vt â 0, Rstr.ac St = ±oMetot~\ where et(\) = eia. 
0 d 

PROOF. By the PW Theorem 13.17, U carries L°2
+(R; W) onto 

I<2([0, oo ) ; W), i.e. by 15.20(c) onto the domain of 2 . Hence the 
domain of 2=d2o£7 is Z,2+(JR; W) and its range is that of 2 , i.e. by 
15.20(c) it is 3C0. Also, since U and 2 are unitary operators, so is 2 . 

Now let t^O, and write S? for Rstr .^S*. Then by (ii), (15.22), 
13.12 and (ii), applied in succession we get 

S°t± = S°t^U = 2r_*17 = HUM et = ±Mêt. 

This completes the proof. H 

When the semigroup (St, t^O) is derived as in (15.3) from a 
strongly continuous unitary group (Ut, tÇzR), the preceding semi­
group representations can be extended to yield translational and 
spectral representations for the group (Ut, tÇîR) itself, as shown in 
[31, §5]. When applied to the closely related theories of the vectorial 
Hardy class H<z, prediction and scattering, cf. 15.2, these explicit 
results for Ut yield the theorems of Nevanlinna, Beurling, and Lax; 
the Wold and spectral decompositions of a stationary stochastic pro­
cess; and the translational and spectral representations of Lax and 
Phillips [22, p. 7]. This has been indicated in the papers [27], [33], 
[31 ], the second of which is with J. B. Robertson. 

16. Unfinished work 

In this section we shall comment on aspects of our theory which 
have either not been discussed above or discussed perfunctorily. 
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16.1. O N THE INTEGRALS fA^Qs)M(dk)^(\). Our work is affected 
by the as yet embryonic state of the theory of such integrals in 
which for XGA & A C A, $>(X), M (A), SI>(X) are continuous linear op­
erators, W'-to-W, W-to-W, W-to-W", respectively. In §9 we had to 
define this integral by the different formulae (9.12), (9.17) for two 
different types of measures M. Wanted is a single definition covering 
all choices of Hilbert spaces W, Wf, W" and all measures M(-). This 
definition should follow the classical pattern: the integral should first 
be defined for simple <i>, "*", and then by a limiting procedure (say, 
with respect to the strong operator topology) for arbitrary integrable 
pairs (4>, \E0. An important interim step would be to treat the integral 
concept as primitive, and to augment the list of basic properties 
given in (9.3) into a list of axioms from which all other properties 
could be deduced. Any proposed definition of the integral would then 
be deemed "acceptable," if it yielded a realization of the axiom-
system. With an acceptable definition of the integral, the definition 
(9.5) of <£2 = L2(A, (B, M; W'oWYz would become unambiguous, as 
would the Criterion 9.9 for the adequacy of M. 

16.2. OPERATIONAL CALCULUS. Let T be a FT-to-X, c.a.q.i. measure 
over (A, (B, M), §8. In §10 we defined for certain measures M (e.g. 
adequate ones) the integral 

(1) j T(d\) {<f>(\)}, where <f>is on AtoW & $ G £>*,w, 
J A 

as a vector in 3C. I t is also possible to define a related integral 

(2) / = f T(dX)#(X), for suitable $ on A to CL(W',W), 
J A 

so that it is a linear operator on T^'-to-JC, by letting 

J(w') = f r(<*X){$(X)(w/)}, w' G W', 

the integral on the right being of type (1). On the basis of the last 
definition we can build an operational calculus for quasi-isometric 
measures somewhat akin to the operational calculus for spectral 
measures. An especially simple choice of $ ( • ) is </>(•)Iw, where #(•) 
is complex-valued. This calculus has already found uses (cf. 16.5), 
but its full scope remains to be investigated. I t would be worthwhile 

48 In which the clause "and is of the trace-class" should be added in case W' is 
infinite dimensional. 
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to find out how it relates to the theory of integration of operator-
valued functions with respect to c.a.o.s. measures in the "inflated" 
tensor product W'oW. In the latter space the inner product of A 
and B is taken to be the operator ("Gramian") B*A rather than 
trace B*A. Such inflated spaces are important in the study of vector-
valued stochastic processes. 

16.3. PSEUDO-EIGENFUNCTION EXPANSIONS. The concept of pseudo-
eigenfunction is usually explicated by going from the initially given 
Hilbert space 3C to other spaces, such as generalized function-spaces 
or rigged Hilbert spaces. Our use of c.a.o.s. measures in L2-transform 
theory (§§4-6) and their application to a boundary-value problem 
of the reduced wave equation given in Appendix II of the Report 
cited in [30] suggests an alternative approach. In this the pseudo-
eigenfunctions would be integrated to form eigenpackets, i.e. values 
of a measure in the Hilbert space 3C itself, cf. [16, §10.4], and this 
(vector-valued) measure used for purposes of integration. Then it 
would become unnecessary to leave 5C. In future work we hope to 
demonstrate the efficacy of this approach by bringing it to bear on 
the work on eigenfunctions of F. I. Mautner [35], W. G. Bade and 
J. T. Schwartz, and others, cf. [ i l , II , pp. 1269-1270]. 

16.4. PERTURBATION THEORY. In the so-called stationary approach 
to perturbation theory due to S. Kuroda, L. de Branges, M. S. 
Birman and others, cf. references in [21 ], perturbation theorems are 
derived from certain spectral representation theorems. In some of 
these the representation space is a von Neumann direct integral, in 
others it is the completion of an L2-space of vector-valued functions 
with respect to an operator-valued measure. Differing concepts of 
operator-measure and vector integration are employed. Certain 
proofs lean on Hilbert-Schmidt kernels, others on vector-valued 
holomorphic functions. 

The results in §§13-15, especially 14.15, suggest that the sys­
tematic use of quasi-isometric measures and integration might pro­
vide a simpler and more uniform approach to such representation 
theorems. We hope to investigate this question elsewhere. 

16.5. EXPLICIT FORM OF THE IMPRIMITIVITY THEOREM. Let 

(U\, X£A) be a strongly continuous unitary representation of a 
locally compact group A on a Hilbert space 3C, (B be the c-algebra 
generated by the Borel subsets of A and their complements, and 
E(-) be a spectral measure for 3C on (B with multiplicity g^fc^o 
such that 
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(1) VX G A & VJ5 G (B, E(B + X) = UxE(B)ut. 

Take any H.H. sequence (|8y, jGJ") for this E(-)» and define the 
space W, the c.a.q.i. measure £ o ( 0 and the hermitian operator-
valued measure -M"0(-) as in 14.9. Then by Theorem 14.12 the in­
duced unitary operator S 0 on L2(A, (B, M0; W) onto 3C possesses the 
first intertwining property demanded by the Imprimitivity Theorem 
(cf. 11.20), viz. 

(2) MB G (B, E(B) =2 0 oM x oSo""*. 

2 does not of course possess the second property, viz. 

(3) VX G A, Ux = Soor-xoSo"1, 

for such possession would make the measure Mo right-invariant, 
which is absurd since M0 is bounded. 

To treat the Imprimitivity Theorem explicitly we will therefore 
construct from E0 and M0 new measures T and N> such that N is 
W'-to-W', nonnegative hermitian opera tor-valued, T is W^-to-tfC, 
c.a.q.i. over (A, <B, N), and the unitary operator S induced by T has 
both the desired intertwining properties. In view of Corollary 
11.19(b) for this we need only show that T fulfills the three require­
ments. 

I. r ( - ) is T^-to-SC basic, 
I I . E( - ) is the spatial integral spectral measure ()(•) of T(-)» 

cf. 10.25(b), 
I I I . r ( - ) is right-stationary with shift group (U\y XGA). 

Space will not permit us to give more than a bare outline of the 
construction. I t hinges on the very simple form assumed by M0 in 
the present situation, as revealed in the following lemma: 

LEMMA. For the above-mentioned spectral measure E(-), the dominant 
measure M==M/3I of any H.H. sequence and the right-invariant Haar 
measure m over A are mutually absolutely continuous. Moreover, 

The proof, which depends on Mackey's lemma on quasi-invariant 
measures [24, 3.3], will be omitted. 

We now proceed heuristically. A little reflection suggests defining 
T(') in terms of E0(-) by an integral of the type 16.2(2): 

(4) T(B) = f Eo(dX)*(X), B G CB, 
J B 
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where <£(•) is a W'-to-W operator-valued function, to be chosen so 
as to secure the requirements I—III. From the calculus of the integrals 
16.2(2) and the last lemma we find that 

(5) T(B)*T(A) - N(AC\B), where N(A) = f $*(XM<ZA)$(X). 

We also find that if the operator <£(X) is invertible for almost all X 
(jtz measure), then T will fulfill the requirements I and II . To deter­
mine $ ( • ) further we have therefore to turn to the requirement I I I . 

Let I I I prevail. Then by Theorem 11.15, N(-)=rn(')H0. The last 
lemma suggests that HQ should be Iw, and so we conclude from 
(5) that 

VA G (B, m(A)Iw, = f $(A)*<ï>(X)M(dA), 

i.e. 

$>*(A)3>(X) = (d<m/dii)(\)-Iw>, a.e. (»). 

The Polar Decomposition now yields 

$(X) = ^r(X)• V{(dm/dn)Çk)} -Iw>, a.e. 0*) 

where the partial isometry ^(X) is, for almost all X (jut measure), a 
unitary operator on W' onto W since $(X) is invertible. Thus (4) 
becomes 

(6) T(B) = f Eo(d\) y/{(dm/dv)Qi)}¥(£), BE®. 

Elsewhere we hope to show that a W'-to-W unitary operator-
valued function ^ ( - ) exists for which the T(-) given by (6) satisfies 
the requirement I I I . 
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