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We define a 2-sphere S in E3? to have vertical order n if each vertical
line intersects S in no more than # points. The main result in this
paper is the following

THEOREM 1. If S is a 2-sphere in E? having vertical order 3, then S
s tame.

This is the best theorem possible in the sense that examples are
known of wild 2-spheres in E3 having vertical order 4 [5]. In Theorem
2 to follow we generalize Theorem 1 to compact 2-manifolds in E?.

Previous work concerned with the nature of the intersection of
verticExl lines with a 2-sphere in E? has been done by Bing [1, Theorem
7.3]; [3].

Proor oF THEOREM 1. The vertical line in E? containing the point
x is denoted by L., and we refer to the bounded component of E3—S
as Int S. If xEInt S it is easy to see that L,MNS consists of two points.
In this case the point with largest third coordinate is denoted by U,
and theotherby V,.Welet U= { U.|x€IntS} and V= { V.| *EInt S},
and we note that U and V are both open subsets of S. A bicollar can
be constructed for a neighborhood of each point of U\UV using short
vertical intervals. Thus S is locally tame at each point of UUV [2].

Let R=S—(UUYV). The proof that S is tame is completed by
showing that R is a tame simple closed curve, since a 2-sphere that is
locally tame modulo a tame simple closed curve is known to be
tame [4].

It will follow that R is a simple closed curve once we show that
each of U and V is connected and that each point pER is arcwise
accessible from both U and V [7, p. 233]. Let 0 be an arc in Int S
U{p} such that p is an endpoint of 8. We now show that the vertical
projection ¢ of 6 into U\J{p} is continuous. To accomplish this we
take a sequence {x.} of points in 6 converging to xo and we prove that
the sequence {a(x.«)} converges to o(x,). Let L; (¢=0,1,2, - - - ) be
the vertical interval from x; to (x;) (if x;=p, then L; is degenerate),
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and let L=Ilimit superior {L;}. Then L is an interval (possibly de-
generate) in L,, having lower endpoint xo. The upper endpoint of L
must lie in S so it cannot lie below o (x¢). On the other hand L cannot
properly contain L, either, since then there would be limit points of
Int S in Ext S. Thus L=L,, and we see that {o(x:)} converges to
o(xo). Since o(f) is the continuous image of an arc, it must contain
an arc having p as an endpoint. Now p is arcwise accessible from V
by the same reasoning. A similar argument would establish the arc-
wise connectivity of both U and V, so we may conclude that R is a
simple closed curve.

All that remains is to show that R is tame. We let pER and we let
€>0. In the remainder of the proof we construct a 2-sphere .S’ such
that pEInt S, S’ has diameter less than ¢, and SR consists of two
points. This is enough to ensure the tameness of R since it implies
that R satisfies property P of [6].

Let N be a round open neighborhood of p with diameter less than
¢, and let & and B be two arcs in R such that aNB={p}, 2\ UBCN,
and no point of NN\R lies vertically above p. There is an arc v joining
the two endpoints of a\UB such that IntyC U and a\JB\U7y is a simple
closed curve J bounding an open disk W in U. Since the vertical pro-
jection w of E® onto a horizontal plane E? is continuous, there exist
arcs o’ and B’ in w(a) and 7 (B), respectively, such that 7(Bda) =Bdo’
and w(BdB) =Bdp’'. The proof is completed in two cases.

Case 1. &'MP’ is nondegenerate. In this case we let x’ be a point of
o’MB’ such that x’ #x(p) =9’, and we let xEa and y EB be two points
such that w(x) =w(y)=x'. Let f be an arc from x to y such that
f—{x, ¥y} CW, and notice that f’ ==(f) is a simple closed curve. It is
not difficult to show that p lies in Int H where H=7"%(f') and Int H
is the component of E3—H whose intersection with E2 is bounded.
We form a 2-sphere T in N by taking the union of HN\N with the two
disks in (Bd N)N(H\UInt H). If TNR= {x, y} we let T=S". Other-
wise TR consists of three points and it follows that R cannot pierce
T at all three points. Thus R must be tangent to H at one point, and
we may move T slightly to the nontangency side of H near the non-
piercing point to form .S’ in this case.

Case 2. /NP’ = {p’}. Let ¥'=n(y) and W =#x(W). In this case
a’\UB'\ Uy’ is a simple closed curve J’ bounding a disk D’ in E2. It is
not difficult to see that W/ ClInt D’ because WNJ'=& and W’ is
arcwise connected. Let N, and N, be round open neighborhoods of
# such that NyN\RCa\UB and each pair of points of RNN, lies in an
arc in (@UB)NN,. If ¥’ Ea’N\7w(N2) and ¥y EF'Nw(Np) there is an
arc g’ from %’ to 3’ such that g'— {x’, ¥/} CE?—D’ and g’ Cx(IV,).
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The idea of the remainder of the proof is to obtain an arc f’ from x’
to ' such that f'— {x’, '} Cxr(N:)NW’, and then to construct the
2-sphere S’ using part of the infinite vertical cylinder H=n"1(f"\Ug’)
and two disks in Bd Ni. Of course, this requires a nice enough selec-
tion of x#’ and 9’ to insure that H intersects R in a controlled manner.

Suppose we are able to select ¥’ Ea’ and 9’ &f’ each having ex-
actly one point, say x and ¥ respectively, of a\UB vertically above it.
Then an arc f can be constructed in Ny (WU {x, y}) whose projec-
tion w (f) satisfies the desired conditions on f’, and it would follow that
HN(a\UB) = {x, y}. Thus S’ could be chosen as the boundary of the
3-cell (HUInt H)N\Ny, and it would follow that RNS' = {x, y}. We
show now that such points x’ and ¥’ can always be found.

Suppose that for each x’ &g’ the set 7~1(x')\B contains at least
two points. We can select x' &8’ such that 7#—!(x’)MN\B contains two
points x; and x, having the property that every open arc in 8 with
either x; or x; as an endpoint intersects #—1(8’). This is possible be-
cause B—7Ya'\UB’) has at most countably many components, and
any point not in the projection of their endpoints would satisfy the
conditions on x’.

We choose disjoint arcs A1 and A4z such that x;EInt A;CA;CfB and
AiNL,;={x;} (i=1, 2), and we choose disjoint disks D; and D, such
that A;CBd D;, (D;—A;)CW, and Bd D;—A4; is an open arc B; in
W (=1, 2). In view of the selection of ¥’ we may assume that the
endpoints of each 4; lie in 71(8’). This implies that the open arcs
B! =w(B;) have their endpoints in §’. Notice that B{ \BJ =, for
otherwise a vertical line through a point of Bf N\BJ would intersect
W twice; and recall that 7 (D,\JD.) Cr(WUJ)CD’. Since x’ lies in
the boundary of both 7(D:) and w(D.), we see that the endpoints of
each B/ separate x’ from 4’/ in Bd D’. Thus the closure of one of B/
and B/, say B{, separates the other from v in D’. This forces Bf to
separate B{ from %’ in D’, and yields a contradiction since there is
an arc in D, from x; to a point of B, missing B.

THEOREM 2. If S is a compact 2-manifold in E* having vertical order
3, then S is tame.

We restrict ourselves here to an outline of the proof of Theorem 2.
By working with a component of S we may suppose that S is con-
nected and consequently that S has exactly two complementary
domains. The sets U, V, and R are defined just as in the proof for
Theorem 1, and in the same way we see that U and V are connected,
open, and locally tame. In this case R is a finite collection of disjoint
simple closed curves each of which can be proven tame by establishing
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Properties P and Q of [6] as before. Thus S is tame, since it is locally
tame modulo a finite collection of tame simple closed curves.
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