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We define a 2-sphere 5 in E3 to have vertical order n if each vertical 
line intersects 5 in no more than n points. The main result in this 
paper is the following 

THEOREM 1. If S is a 2-sphere in E3 having vertical order 3, then S 
is tame. 

This is the best theorem possible in the sense that examples are 
known of wild 2-spheres in E3 having vertical order 4 [5]. In Theorem 
2 to follow we generalize Theorem 1 to compact 2-manifolds in E3. 

Previous work concerned with the nature of the intersection of 
vertical lines with a 2-sphere in E3 has been done by Bing [l , Theorem 
7.3]; [3]. 

PROOF OF THEOREM 1. The vertical line in E3 containing the point 
x is denoted by LXf and we refer to the bounded component of E3 —5 
as Int 5 . If # £ I n t S it is easy to see that Lxr^S consists of two points. 
In this case the point with largest third coordinate is denoted by Ux 

andtheotherby Vx.Welet U= { Ux\xGïntS} and F = { Vx\xGIntS}, 
and we note that U and V are both open subsets of 5. A bicollar can 
be constructed for a neighborhood of each point of U\J V using short 
vertical intervals. Thus S is locally tame at each point of U^JV [2]. 

Let i? = 5—(C7VJF). The proof that S is tame is completed by 
showing that R is a tame simple closed curve, since a 2-sphere that is 
locally tame modulo a tame simple closed curve is known to be 
tame [4]. 

I t will follow that R is a simple closed curve once we show that 
each of U and V is connected and that each point p&R is arcwise 
accessible from both U and V [7, p. 233]. Let 0 be an arc in Int S 
yj {p} such that p is an endpoint of 0. We now show that the vertical 
projection a of 6 into UKJ{p} is continuous. To accomplish this we 
take a sequence {xi} of points in 0 converging to #o and we prove that 
the sequence {o"(#»)} converges to a*(xo). Let Li (i = 0, 1, 2, • • • ) be 
the vertical interval from Xi to <r(xi) (if Xi — py then Li is degenerate), 
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and let L = limit superior {Li}. Then L is an interval (possibly de­
generate) in LXQ having lower endpoint xo. The upper endpoint of L 
must lie in S so it cannot lie below <r(xo). On the other hand L cannot 
properly contain L0 either, since then there would be limit points of 
In t 5 in Ext S. Thus L = L0, and we see that {o"(#t)} converges to 
0-(#o). Since <r(0) is the continuous image of an arc, it must contain 
an arc having p as an endpoint. Now p is arcwise accessible from V 
by the same reasoning. A similar argument would establish the arc-
wise connectivity of both U and Vf so we may conclude that R is a 
simple closed curve. 

All that remains is to show that R is tame. We let pÇzR and we let 
€>0 . In the remainder of the proof we construct a 2-sphere S' such 
that £ £ I n t 5 ' , S' has diameter less than e, and ST\R consists of two 
points. This is enough to ensure the tameness of R since it implies 
that R satisfies property P of [ô]. 

Let N be a round open neighborhood of p with diameter less than 
e, and let a and j8 be two arcs in R such that aC\^= {p}, a^JPCN, 
and no point of Nf~\R lies vertically above p. There is an arc y joining 
the two endpoints of aU/3 such that Int y C U and aUfiVJy is a simple 
closed curve J bounding an open disk W in U. Since the vertical pro­
jection 7r of Ez onto a horizontal plane E2 is continuous, there exist 
arcs a' and j3' in TT(O) and 7r(j8), respectively, such that 7r(Bda) = Bda' 
and TrCBdjS^BdjS'. The proof is completed in two cases. 

Case 1. aT\{if is nondegenerate. In this case we let x' be a point of 
a!C\$' such that x' ?*T(P) =p', and we let # £ a and y £j3 be two points 
such tha t 7r(x)=7r(y)=x / . Let ƒ be an arc from x to y such that 
ƒ— j ^ j j c ^ , and notice that f=T(f) is a simple closed curve. I t is 
not difficult to show that p lies in Int H where i J = 7r~1(f/) and Int H 
is the component of Ez—H whose intersection with E2 is bounded. 
We form a 2-sphere T in N by taking the union of HH\N with the two 
disks in (Bd N)nÇBT<JInt H). If THR** {x,y} we let T = S'. Other­
wise TC\R consists of three points and it follows that R cannot pierce 
T a t all three points. Thus R must be tangent to H a t one point, and 
we may move T slightly to the nontangency side of H near the non-
piercing point to form 5 ' in this case. 

Case 2. aT\p= {p'}. Let V ^ C T ) and W'=7r(W). In this case 
a'VJj3'V>y' is a simple closed curve Jf bounding a disk Df in E2. I t is 
not difficult to see that W'Clnt D' because WC\J' = 0 and W' is 
arcwise connected. Let N\ and N2 be round open neighborhoods of 
p such that ÎVIP\JRC<2VJJ3 and each pair of points of RC\N2 lies in an 
arc in ( a U f t n ^ . If x'EaT\T(Nt) and / £ | 8 ' n i r ( i V t ) there is an 
arc g' from x' to y' such that g'— {*', / } <ZE2-~D' and g ' O W ) . 
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The idea of the remainder of the proof is to obtain an arc ƒ from x' 
to y1 such that ƒ' — {#', y1} C.7r(Ni)r\W', and then to construct the 
2-sphere S' using part of the infinite vertical cylinder H~ir-l{f\Jgf) 
and two disks in Bd Ni. Of course, this requires a nice enough selec­
tion of x1 and y' to insure that H intersects R in a controlled manner. 

Suppose we are able to select x ' £ a / and y'GjS' each having ex­
actly one point, say x and y respectively, of aSJfi vertically above it. 
Then an arc ƒ can be constructed in NiC\(W\J {x, y}) whose projec­
tion w(f) satisfies the desired conditions on / ' , and it would follow that 
Hr\(aSJf3) = {x, y}. Thus S' could be chosen as the boundary of the 
3-cell (ffVJInt H)r\Nu and it would follow that RC\S' = {*, y j . We 
show now that such points x' and y' can always be found. 

Suppose that for each x '£ /3 ' the set T"~l(x')r\l3 contains at least 
two points. We can select x'GjS' such that ir^ix')^^ contains two 
points xx and xi having the property that every open arc in j8 with 
either x\ or Xt as an endpoint intersects ir^if}'). This is possible be­
cause j3— 7T~'1(a/Uj8') has a t most countably many components, and 
any point not in the projection of their endpoints would satisfy the 
conditions on x'. 

We choose disjoint arcs A\ and A% such that #»£ In t A4C.A4C.li and 
AiC\LXi— \xi\ (i = 1, 2), and we choose disjoint disks D\ and D2 such 
that A<CBd Di, (Di~-Ai)CW, and Bd !>»—Ai is an open arc Bi in 
W ( i = l , 2). In view of the selection of x' we may assume that the 
endpoints of each Ai lie in w1^). This implies that the open arcs 
Bi =ir(Bi) have their endpoints in j3'. Notice that BIC\B{ = 0 , for 
otherwise a vertical line through a point of B{ C\B{ would intersect 
W twice; and recall that 7r(Z>iUA)Cx(PFU/)CI>' . Since x' lies in 
the boundary of both ir(Di) and ir(Dî)y we see that the endpoints of 
each Bi separate x* from y' in Bd D'. Thus the closure of one of B{ 
and B{, say B{, separates the other from y in Df. This forces ~Bl to 
separate B{ from x1 in £>', and yields a contradiction since there is 
an arc in D\ from x\ to a point of Bx missing J52. 

THEOREM 2. /ƒ 5 is a compact 2-rnanifold in Ez having vertical order 
3, then S is tame. 

We restrict ourselves here to an outline of the proof of Theorem 2. 
By working with a component of S we may suppose that 5 is con­
nected and consequently that S has exactly two complementary 
domains. The sets U, V, and R are defined just as in the proof for 
Theorem 1, and in the same way we see that U and V are connected, 
open, and locally tame. In this case R is a finite collection of disjoint 
simple closed curves each of which can be proven tame by establishing 

A4C.A4C.li
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Properties P and Q of [ô] as before. Thus 5 is tame, since it is locally 
tame modulo a finite collection of tame simple closed curves. 
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