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1. Introduction. In 1958 R. C. Buck [2] made a study of the /3 or 
strict topology (introduced in [l ] and named for its resemblance to 
a topology of Beurling) on the space C(S) of bounded continuous 
functions on a locally compact space S under which the dual of C(S)p 
is the space M(S) of bounded regular Borel measures on S. In 1966, 
J. B. Conway [4], [5] showed that when S is cr-compact (or even 
paracompact) the strict topology is the Mackey topology on C(S)p 
—the finest locally convex topology on C(S) for which the dual is 
M (S). However, when 5 is the space of ordinals [l, Q) less than the 
first uncountable ordinal Q, Conway showed that j8 is not the Mackey 
topology on C(S)p. 

In [lO] Wang studied the strict topology generalized to Banach 
algebras. More recently, the author and D. C. Taylor [8] studied the 
strict topology defined by a Banach algebra B with approximate 
identity on a left Banach J3-module X by way of the seminorms 
:e—>||7#||, one for each TÇE.B such that B separates points of X. No 
necessary or sufficient conditions were obtained for which this general 
strict topology j3 is the Mackey topology on X$. In this paper, suffi­
cient conditions are given in order that j3 be the Mackey topology on 
Xp, with our aim being to obtain conditions which in some sense 
differentiate between the case where 5 is cr-compact, as opposed to 
S = [l , Q), but in the general setting of [8]. A crucial step in the argu­
ment is provided by some results which generalize that of Dorroh 
[6] and show that the continuity of linear maps on X$ is often deter­
mined by their continuity on norm bounded sets in X. 

2. Some observations. I t is a known result that if a space E has 
its Mackey topology T—T{E1 E'), then every continuous map on E 
into a locally convex space F with its weak topology is continuous on 
E into F with its given topology. Actually one can prove 
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THEOREM 2.1. £ has the topology r iff every continuous linear map on 
E into a space C(T) with the topology of pointwise convergence on T is 
continuous with the supremum norm topology on C(T),for every compact 
Hausdorff space T. 

This is not a very deep result, but it did motivate our approach to 
the problem. In §4 we consider the continuity of linear maps on Xp. 

In [8], (where we assume B separates points of X and from which 
all further notation is taken) it is shown that /3 is the given norm 
topology on X iff B contains a one-to-one operator on X with closed 
range. Our approach is to weaken this latter condition and obtain 
j8 = r. We note that in the case B = Co(S), X = C(S)> there is a 0 
ECo(S) such that ƒ—*£•ƒ is one-to-one for fGC(S)> when S is cr-com-
pact, but not when 5 = [l, Q). 

However, we also note that when X is a separable Hubert space 
and B is the algebra of compact operators in X with countable ap­
proximate unit consisting of projections onto finite dimensional sub-
spaces, then, as our Theorem 3.3 asserts, there is a one-to-one A £ 5 , 
but since X is reflexive and X = Xe= { Tx: TÇîBy xÇiX), the Mackey 
topology on X$ is the norm topology. Hence a further condition is 
needed to obtain /3=r. Our Theorem 5.1 provides such a condition. 

3. One-to-one operators in B. Suppose that {E\} is a two-sided 
approximate identity for B bounded by 1 and that there is an A £ B 
such that A is one-to-one on X and such that for each X, E\A~X is a 
bounded linear operator on A (X) (ZXe. I t follows that one can obtain 
a sequence }X„} such that 

3(a) XW+1^X, and \\EKEH-Eik\\^l/2" for fcgn-1 
3(b) I f / 3 è X » t h e n e a c h o f | | E x i l - i l | | , | | i 4 £ x - i l | | a n d | | i l E x - E x i l | | 

g 1/2". 
Upon letting En = E\n we have 

THEOREM 3.1. (a) For xGX, Enx—^x in the strict topology. 
(b) If A (X) is dense in Xe, then Enx-^x in the norm topology f or Xe 

for all x £ I 6 , 

Letting œ denote the topology on X induced by the norm #—>||w4#|| 
we have 

THEOREM 3.2. (a) K^cogjS. 
(b) K = co=j8 on a'-bounded sets. 
(c) If X is co-complete, then /3 is the given norm topology on X. 

While in 3.1, {En} need not be an approximate identity for B we 
can obtain the partial converse. 
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THEOREM 3.3. Suppose B contains a bounded sequence {Gn} such 
that Gnx—>x in the strict topology f or each x £ J . Then, if lga»—»<», 
then there is a 1-1 A&B such that WGnA^W ^an on A(X). 

The proof of Theorem 3.3 depends on showing that 
00 

27= U (l/ajGJW) 

is equicontinuous in XR' , where U° is the polar of the unit ball U 
in X€. 

We note that one can have j3=r and not have a 1-1 operator A in 
B, for when S is not <r-compact and C(S)R is Mackey (e.g., if 5 is 
paracompact) no #(ECo(S) can separate points of C(S) since any such 
cf> has cr-compact support. However, it is important to note that when 
5 is paracompact, then 5 is the union of mutually disjoint open and 
closed (T-compact spaces and it is this fact which allows one to show 
that j8 is the Mackey topology on C(S)R. 

Finally we note, 

THEOREM 3.5. If A and {E\} are such that supxHEx l̂"""1!! < <*> on 
A(X), then j3 is the given norm topology on X whenever the /3 bounded 
sets are norm bounded. 

4. Continuity of linear maps on Xs. Our Theorem 3.2 indicates 
that j3 can be a relatively nice topology on bounded sets. In [5] 
Dorroh showed that the "bounded strict topology" on C(S), whose 
base of neighborhoods consisted of absolutely convex absorbent sets 
W such that WC^B^BrCW for some j8 neighborhood Vy for each 
ball Br of radius r > 0 , is equivalent to j8. We extend this result to the 
general case of the strict topology studied in [8]. For a general study 
of topologies of this type see [3]. 

THEOREM 4.1. If Br= {x^X: \\x\\ Sr) and if Wis a fi-closed, abso­
lutely convex, absorbent set in X such that f or each r > 0 there is a $ 
neighborhood V of 0 such that Wr\Br"DBrr\ V, then W is a 13 neighbor­
hood of 0. 

COROLLARY 4.2. (a) /3 is the finest locally convex topology on X agree­
ing with /3 on each set Br iff every linear functional on X which is ft con­
tinuous on each Br is ]8 continuous on X. 

(b) When XR' =Xé the equivalent conditions in (a) hold. 

COROLLARY 4.3. (a) A weakly continuous linear operator L on XR 

into a locally convex space E is continuous iff L is continuous at 0 on 
each set Br. 
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(b) If Xp =Xi , then a linear mapping L: Xp~±E is continuous iff L 
is continuous at 0 on each set Br. 

Since ]8= co = K on each set Br it follows that when an operator A of 
the type considered in §3 exists, then A determines the continuity of 
linear maps on Xp when Xp = X'e. 

5. The main theorem. We suppose B contains an operator A with 
the properties assumed at the start of §3 and that {En} has been 
chosen to have properties 3(a) and 3(b). 

THEOREM S.l. If X pis complete, then /3=r when the following condi­
tion holds: If {xk} QXer\Br is a sequence such that 

(a) ^Axk\\ ^l/2k"1 and 
(b) ||Enjfc#yl| ^ t / 2 * - 1 for fe^j — 1, j = l , 2, • • • for a subsequence 

{Enk}c{En)y then 
(C) S U p ^ | | i : L l £ n ^ | | < 0 0 . 

To sketch the proof of Theorem 5.1, suppose H is aw* compact 
absolutely convex set in Xp such that the polar HQ oi H in X is not 
a ^-neighborhood of 0. Then by Theorem 4.1 and [8, Theorem 3.1] 
there is an r > 0 such that H°r\BrDBrr\ VT holds for no TÇB, where 
VT={xeX:\\Tx\\<zl} 

Let Cn = max{||EA^4~"1|| : l^k^n}. I t then follows that there is an 
xiG VAr\Brr\Xe and an x{ £ i J and £W lG } Ek} such that | (Enixi, x( ) \ 
è l . We then obtain tf2G(l/2)cniF^n£rnX«, £n2, x{ EH such that 
\(En2x2, x 2 ' ) | è l and note that ||Enix2|| =||EWl^4~1-4x2|| ^CnJI^^H 
^ 1 / 2 . 

Continuing this way we obtain sequences, {xi} G-Br, {En.} C {Ek}, 
{xl } CHsuch that | (EniXi, * /> | è 1 and ||£»^«|| ^ 1/2'-1 for j £ i - l . 
From our hypothesis, if {an} Gfc, then the sequence yn = X X i Q>iEniXi 
is norm bounded in X and co-cauchy by choice of #i+iG(l/2*)cw<FA. 
From 3.2(b), L{a t } =l im yn exists in Xp. 

Since by our hypothesis and the uniform boundedness principle 
applied to /<», L maps bounded sets into bounded sets, then from 
3.2(b) and 4.3(a) it follows that L is continuous on /«,, with the strict 
topology defined by c0, into Xp. Hence L'(H) is j8-equicontinuous in 
(/«,)// = h. But this is contradicted by the inequalities | (Enixif x{)\ è l 
for i = l , 2, • • • . 

The reader familiar with [4] or [5] will note some similarity of 
argument in the above proof. We note also that it is often more 
natural to view condition (c) in terms of the equivalent (by virtue 
of (b)) condition 
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sup| 
p 

X (Enk+1 — Enk)Xk+i < oo. 

Finally, suppose that X is a Banach algebra and B is a closed commu­
tative right ideal in X which is a sup norm algebra with approximate 
identity {e\} bounded by 1. We then have 

COROLLARY 5.2. If there is an aÇzB such that ax = 0 implies x — O 
for xE:X and such that for each X there is a number k\ such that \\ax\\ ^ 1 
implies \\e\x\\ Sk\, then /? is the Mackey topology on the complete locally 
convex space Hom^CB, Xe)$. 

Regarding further applications, it is clear that our condition fails 
f or the example mentioned at the end of §2. In [8] several examples 
in which jS^r are given, notably the strict topology on LP(G), 
1<P< oo, denned by UÇG). The most interesting case is that of the 
strict topology on M(G) defined by &(G) where it is not so clear that 
our condition fails, as it must for G the group of real numbers because 
of the following example. If en(x) = — n2\x\ +n for \x\ ^1/n and 0 
for | a; | >l/n, then the collection of uniformly continuous functions 
fn(x) = (l/n)[en(l/n+x)+en(l/n—x)] in M(G)$ is weak* compact 
but cannot be j3-equicontinuous [8, Theorem 4.8], since \en\ is an 
approximate identity for Ll(G) and ||e*/n— /»|| «,5^1/4 for all n. One 
would like to determine whether our condition in 5.1 is necessary for 

Of the examples of the strict topology considered in [8], the only 
remaining one is that defined by the Banach algebra B of compact 
operators in a Hubert space H on the left ^-module X of all bounded 
operators in H. Here Taylor [9] has shown that the Mackey topology 
on Xfi is not j8, but (when H is separable) is the "double-strict" topol­
ogy obtained in the natural way by considering X as a left and right 
.B-module simultaneously and has extended this result to I?*-algebras 
with countable approximate identity. 
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