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Let O be a bounded open subset of JRn, with smooth boundary T 
(the theory is easily extended to compact manifolds). Let A be a 
differential operator of order 2m (m^ l ) , with coefficients in C°°(Ô), 
such that A is uniformly strongly elliptic and formally self ad joint 
in 5. We consider the L2(Q)-realizations of A, determined by bound­
ary conditions of the form 

(1) Jju - X) F&YkU = 0, jEJ; 
keK,k<j 

here J and K are complementing subsets, each consisting of m ele­
ments, of the set M= {0, • • • , 2m — l} ; the Fjk denote (pseudo-) 
differential operators in Y of orders j—k; and the Y& denote the stan­
dard boundary operators: yoU-u\T, 7*w = Djw|r, for «GC 0 0®, 
where iDn = d/dn is the interior normal derivative at V. (1) is a re­
duced form of the usual normal type of boundary conditions, general­
ized to include pseudo-differential operators in T. 

Let Â be the operator in L2(Q) defined by 

D(I) = {«G L2(ti) I Au G L2(Ü)} u satisfies (1)}, 
(2) 

Au = Au on D(A). 
(The definition is given a sense by the general concept of boundary 
value introduced by Lions-Magenes [7]). We shall give below a 
necessary and sufficient condition on the operators Fjk (together with 
A) in order that A be m-coercive, i.e. satisfies 

(3) Re(Âu, u) + \\\u\\l è c\\u\\l, Vu G D(Â),1 

for some c>0, X£2?. The condition has two parts: 
1° it is necessary that the Fjk with j and k*zm are certain functions 

of the Fjk with j and k<m in order that Â be even lower bounded 
(Theorem 1); 
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1 Here \\u\\t denotes the norm in the Sobolev space H*(Q), sGR. 
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2° when 1° is fulfilled, the m-coerciveness is equivalent with an 
algebraic condition on the principal symbols (Theorem 2). 
Theorems 1-2 arise as corollaries of a general result (Theorem 3), 
which permits application of [4], [S]. 

In [ l ] , Agmon gave an algebraic condition for w-coerciveness of 
self adjoint realizations defined by differential boundary operators; 
restricted to such realizations, our condition is equivalent with his. 
Our result also extends those of Fujiwara-Shimakura [3] and Grubb 
[5], treating certain nonself ad joint classes of (1). The theory avoids 
the classical considerations of integro-differentiai forms, which are 
not very convenient for the question of necessity. However, our 
w-coercive Â are variational in the sense of [5] (i.e., Â+\ is regularly 
accretive in Kato's sense, for suitable XGJR). 

1. A necessary condition for lower boundedness. For a (pXq) 

E = (CEi*))j-o....,p-ij 

and two ordered subsets Ni and N2 of {0, • • • , p — 1} resp. 
{0, • • • , q — l } , we denote the minor ((Ejk))jeNUkeN2 by ENM. 
Similarly for a row- or column-vector <f> = {<j>0, • • • , <£p-i} we denote 
{4>s}jeNi by <t>NV We also u s e ^ ^ to indicate a vector {<f>j}je&i indexed 
by Nt. 

Let J , K and M be as above, then we introduce the ordered subsets 
of M: M o = { 0 , • • , m — l } , Afi={w, • • , 2 m - l } , J 0 = / n i 0 , 
Ji = jr\Mi, KO^KKMQ and Kx=*Kr\Mi. When NQM we set 
N' = {n | 2m — 1 — n&N}, considered again as an ordered subset of M. 

The "Cauchy" boundary operator {70, • • • ,72m-i} will be denoted 
by p. 

With this notation, (1) is equivalent with 

(4) pJ9U = F0pK0U, pjxU = FtPKoU + F2pK1U, 

where Fo, F\ and F2 are the matrices of (pseudo-)differential operators 

(whereweput Fi* = 0 f o r j g * ) : F 0 = ((^y*))y€/o.*er0» ft= ( ( J fyOW^e* . 
and F2 — ((Fjk))jejltkeKv (Evident modifications when empty index 
sets occur.) They are of types (—k, —j)jej0tkeK0, ( —*, —j)jejltheK0an.d 
( — k, —j)j€jltkeKl9 respectively. (The notion of type is a convenient 
generalization of order to matrices, the principal symbol <r° is defined 
accordingly, see Hörmander [ó], or [S].) Note the way in which F0 

and F2 are minors of matrices with zeroes in and above the diagonal; 
we shall say that they are subtriangular. 

The operator F0, which maps n * e x 0 H8~k(T) into I L e j 0 H9~k(T), 
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all 5 G R, can be supplemented with the identity on H^e^o H*~k(T) to 
yield an operator * from ILe*o H*~k(T) to YLkeM0 H'~k(T): 

Ü'-ÖKQ*-* $MQ, w h e r e ypKo = </>K0, faQ = Fo<l>Kr 

We write in short 

-cr> * = ( ° j , where IKQ = ((*/*))ƒ .*ex0-

The adjoint $* sends <t>M0 into </>K0+F(f<t>Jo and is written in short as 
&* — (IKQ j?0*). $ and $* are (pseudo-)differential operators of types 
( — £> —j)jeM0,keK0 resp. (&, j)jeK0,keM0; with an analogous notation 
for their symbols one has e.g. cr°(<£*) = (IK9 <T°(F0)*). 

At the points of T one may write A in normal and tangential coordi­
nates 

2m 

(6) A^JZAtDn, 

where the -4i denote differential operators in T of orders 2m —I; Aim 

is a positive function. Then one has the Green's formula 

(7) (Au, v) — (u, 4̂fl) = I dpwpvdo-, u, v £ C°°(Ô), 
J r 

where Cfc is a (2m X 2m)-matrix of differential operators in T: Gfc 
= ((Gy*))j\*ejf where each 6t# has the form £4/+*+!+differential 
operators of orders less than 2fn — (j+k + l) (we put A i = 0 f or Z > 2m), 
cf. Seeley [8], or [5]. We note that ($* = — Cfc, and that a is skew-
triangular and invertible with Or1 a differential operator; Ofc is elliptic 
of type ( — k, — 2m+j+l)y, fceM. 

THEOREM 1. /ƒ 4̂ is tower bounded, that is, if there exists A£J? such 
that Re(Âu, u) âX|M|o» VuÇzD(Â), then KQ=*JI, and 

(8) F2 = - ( ^ a ^ ) - ^ * ® ^ . 

(Here **Ctji/0j1 is invertible when K0 = Ji, thanks to the special char­
acter of & and the subtriangularity of F0.) 

REMARK 1. The case treated by Fujiwara-Shimakura [3], Fujiwara 
[2] and Grubb [5, 4.3-4.4] is the case where 

KQ = JI = {m — p, • • • , m — l} 

for some p^m, here F0 and F2 are 0 by their subtriangularity; the 
case in Grubb [5, 4.5] takes general KQ but JFO = 0 . 



i97o] COERCIVENESS OF BOUNDARY PROBLEMS 67 

2. The condition for w-coerciveness. In accordance with (6), the 
principal symbol of A may at points y GET be written in the form 
a(y> y> T) = ]C?»o al(y> y)rl> where ai(y, rj) denotes the principal symbol 
of Ai\ here r) belongs to the fibre at y of the cotangent bundle T*(F), 
and TÇZR. For each (y, TJ) with rjy^Oy the polynomial a(y, 77, r ) has 
exactly m roots {rtiy, v) }?~i m { X G C | l m X > 0 } . We can then form 
the polynomial YLZi (r—rt(yf rj)) = z2?-o si(y> V)T1, and use the 
coefficients to define the following (wX^)-matr ix valued functions 
on the nonzero subbundle T*(T) of T*ÇT) : So(y,r}) = ((s*-y(y,i/)))y.*ejifo 
and Sm(y, rj) = ((sm+h^(y, v)))j,keMQ, where we put S| = 0 for /(£ [0, *»]. 
Denoting by J* the skew-unit matrix ((ôi,m-i-*))y,*sifof w e finally 
introduce Q = i l * 5OT 5W, i? = iJ* 5W So, here S denotes the complex con-
jugate of 5 . (More details in [5, Chapter 4 ] , in fact Q = A^ ^(CIMOMJJ 
and R is the principal symbol of a certain pseudo-differential operator 
inT.) 

THEOREM 2. Â is m-coercive if and only if it satisfies (i) and (ii) : 
(i) X 0 = Jri/, and F2= -(**a iif0j1)-1$*ajif02s:r 

(ii) Let Jz= {j\j+rnÇzJi}, and let E(y, rj) be the matrix valued 
function on T?(T): 

(9) E = *»(*)*Qus%<r°(Fd + o«(*)*£<r0(*), 

then E+E* is positive definite on T*(T). 
In the affirmative case, A is 2m-regular (Au E#*(Œ)=»wEH*+2m(0), 

y s è 0), and Â* is also m-coercive and 2m-regular. 

3. Explanations and further developments. The first step in our 
proof of Theorems 1-2 is the transformation of (4) into an equivalent 
boundary condition of the form 

(10) yJou = FQyKou, XJX'U = Gxy^u + GtXKi'U, 

where y and x denote the m-vectors of boundary operators: y —PMQ, X 

^CLMoMiPMi+i^MoMQpMoi with which Green's formula (7) takes 
the simple form: (Au, v) — (u, Av) =/r(x^,f^~~Y^,X*0<fo"- Note that 
X= {xk}keM0, where x* is of order 2m — k — 1. There is 1-1 correspon­
dence between the systems (F0, Fi, F2) and (F0, Gi, G2) (we omit the 
formulae); G2* is again subtriangular. 

Assuming, as we may, that the Dirichlet problem for A is uniquely 
solvable, we define the operator P 7 l X in £ / ( r ) m b y : P7 ,x0 —X2» where 
zis the solution of Az = Q in Q,yz =<£ (cf. [4], [5]). P 7 , x is a self adjoint 
pseudo-differential operator in T of type ( —&, — 2m+j+l)jlkeMQ 

(Vainberg-Grusin [9]); its principal symbol is described in detail in 
[5, Chapter 4 ] . 
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THEOREM 3. In addition to the notations introduced above, let ^ 
be the operator analogous to 3> with Fo replaced by — Gf. Let X 
=$(Ukek0H-»-v*(T)) and let F = ^ ( ] I ^ ^ H ' ^ - 1 / 2 ( r ) ) . Let ^ and 

^ 1 be the restrictions of $ and *& with domains JJik<=K0 H~k~"ll2(Y) resp. 
YLkeJi' H~k~ll2(T) and ranges X resp. Y, clearly they are isomorphisms. 
Finally, introduce the pseudo-differential operator £1 of type 
( — *, — 2m+j+l)jej^keKQ: 

Then A corresponds, in the sense of [4, Theorem I II 2.1] {based on the 
Dirichlet problem), to the operator L: X—*Y' defined by 

D(D - U G x \ £l*rV G n #*+1/2(r)l, 
v keJi' J 

L<t> = ( ^ t r ^ i ^ T V , when <t> G D(L). 

Theorem 1 follows from this by use of [4, Theorem III 4.3] : Lower 
boundedness of A implies XQY, and then by the subtriangularity 
$ = ^ , so that Ko = Ji and F0= — G2*, which leads to (8). Note that 
t h e n X = F . 

Theorem 2 uses [5, Corollary 2.4]: A is w-coercive if and only if 
L is m-coercive, i.e., J C F and 3c>0, X£2? so that 

Re<L0r, ^>+X||*||»(-*-i /i,ec||0|| f(1II-*-i/1) on Z>(L).2 

This is equivalent with a similar property for Li=ty*I&if which is a 
certain "realization" of «£1, and here the property amounts 
(besides $=&) to the positive definiteness of <r0(JBi+<C*) (in fact 
E = A^<j°(£i)); the computations resemble those in [S]. The last 
statement in Theorem 2 uses the ellipticity of «£1. 

REMARK 2. The self adjoint m-coercive A are characterized by Theo­
rem 2 (i), (ii), plus selfadjointness of Gi=$*®M()jlFi+$$*6,MoM<fb 
(then E is also self ad joint). 

REMARK 3. Theorem 3 gives a basis for the discussion of many 
other properties of A, because of the way in which they are preserved 
by the correspondence between A and L, see [4], [5]. Regarding 
coerciveness, we mention that : 

1° the conditions in Theorem 2 are also necessary and sufficient for 
(m — e)-coerciveness with e £ [0, 1/2 [ (cf. Fujiwara-Shimakura [3]), 

2° the discussion of (m —1/2)-coerciveness in Fujiwara [2] (re­
lated to subellipticity [6]) seems extendable to the present case, 

» ||0||{^-i/t} denotes the norm in HkeM0H'~k-1HT). 
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3° a necessary condition for lower boundedness ("O-coerciveness") 
is the positive semidefiniteness of Ö"°(<£I+<£*) (cf. [5, Theorem 4.3]). 
Let us mention that lower boundedness +2w-regularity do not imply 
m-coerciveness as in the self adjoint case; examples using pseudo-
differential operators: take <£i elliptic with <£i*= — £\. 

Concerning extensions of the results to operators A that are 
merely strongly elliptic, let us mention that the case K0~Ji 
= {rn—p, • • • , w — 1} has been treated by Fujiwara [2]; the device 
of [2] does not extend to our general case. 
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