COERCIVENESS OF THE NORMAL BOUNDARY PROBLEMS FOR AN ELLIPTIC OPERATOR

BY GERD GRUBB

Communicated by Avner Friedman, July 24, 1969

Let Ω be a bounded open subset of \mathbb{R}^n , with smooth boundary Γ (the theory is easily extended to compact manifolds). Let A be a differential operator of order 2m $(m \ge 1)$, with coefficients in $C^{\infty}(\bar{\Omega})$, such that A is uniformly strongly elliptic and formally selfadjoint in $\bar{\Omega}$. We consider the $L^2(\Omega)$ -realizations of A, determined by boundary conditions of the form

(1)
$$\gamma_{j}u - \sum_{k \in K, k < j} F_{jk}\gamma_{k}u = 0, \quad j \in J;$$

here J and K are complementing subsets, each consisting of m elements, of the set $M = \{0, \dots, 2m-1\}$; the F_{jk} denote (pseudo-) differential operators in Γ of orders j-k; and the γ_k denote the standard boundary operators: $\gamma_0 u = u \mid_{\Gamma}$, $\gamma_k u = D_n^k u \mid_{\Gamma}$, for $u \in C^{\infty}(\bar{\Omega})$, where $iD_n = \partial/\partial n$ is the interior normal derivative at Γ . (1) is a reduced form of the usual *normal* type of boundary conditions, generalized to include pseudo-differential operators in Γ .

Let \tilde{A} be the operator in $L^2(\Omega)$ defined by

(2)
$$D(\tilde{A}) = \{ u \in L^2(\Omega) \mid Au \in L^2(\Omega), u \text{ satisfies (1)} \},$$
$$\tilde{A}u = Au \text{ on } D(\tilde{A}).$$

(The definition is given a sense by the general concept of boundary value introduced by Lions-Magenes [7]). We shall give below a necessary and sufficient condition on the operators F_{jk} (together with A) in order that \tilde{A} be m-coercive, i.e. satisfies

(3)
$$\operatorname{Re}(\tilde{A}u, u) + \lambda \|u\|_{0}^{2} \ge c \|u\|_{m}^{2}, \quad \forall u \in D(\tilde{A}),^{1}$$

for some c>0, $\lambda \in \mathbb{R}$. The condition has two parts:

1° it is necessary that the F_{jk} with j and $k \ge m$ are certain functions of the F_{jk} with j and k < m in order that \tilde{A} be even lower bounded (Theorem 1);

AMS Subject Classifications. Primary 3545, 3519, 3523; Secondary 3504.

Key Words and Phrases. Coerciveness inequality, normal boundary conditions, elliptic operator, formally selfadjoint, nonselfadjoint, lower bounded realization, variational, pseudo-differential operator, principal symbol.

¹ Here $||u||_{\bullet}$ denotes the norm in the Sobolev space $H^{\bullet}(\Omega)$, $s \in \mathbb{R}$.

2° when 1° is fulfilled, the m-coerciveness is equivalent with an algebraic condition on the principal symbols (Theorem 2).

Theorems 1-2 arise as corollaries of a general result (Theorem 3), which permits application of [4], [5].

In [1], Agmon gave an algebraic condition for m-coerciveness of selfadjoint realizations defined by differential boundary operators; restricted to such realizations, our condition is equivalent with his. Our result also extends those of Fujiwara-Shimakura [3] and Grubb [5], treating certain nonselfadjoint classes of (1). The theory avoids the classical considerations of integro-differential forms, which are not very convenient for the question of necessity. However, our m-coercive \tilde{A} are variational in the sense of [5] (i.e., $\tilde{A} + \lambda$ is regularly accretive in Kato's sense, for suitable $\lambda \in R$).

1. A necessary condition for lower boundedness. For a $(p \times q)$

$$E = ((E_{jk}))_{\substack{j=0,\dots, p-1,\\k=0,\dots, q-1}}$$

and two ordered subsets N_1 and N_2 of $\{0, \dots, p-1\}$ resp. $\{0, \dots, q-1\}$, we denote the minor $((E_{jk}))_{j \in N_1, k \in N_2}$ by $E_{N_1N_2}$. Similarly for a row- or column-vector $\phi = \{\phi_0, \dots, \phi_{p-1}\}$ we denote $\{\phi_j\}_{j \in N_1}$ by ϕ_{N_1} . We also use ϕ_{N_1} to indicate a vector $\{\phi_j\}_{j \in N_1}$ indexed by N_1 .

Let J, K and M be as above, then we introduce the ordered subsets of $M: M_0 = \{0, \cdots, m-1\}$, $M_1 = \{m, \cdots, 2m-1\}$, $J_0 = J \cap M_0$, $J_1 = J \cap M_1$, $K_0 = K \cap M_0$ and $K_1 = K \cap M_1$. When $N \subset M$ we set $N' = \{n \mid 2m-1-n \in N\}$, considered again as an ordered subset of M. The "Cauchy" boundary operator $\{\gamma_0, \cdots, \gamma_{2m-1}\}$ will be denoted by ρ .

With this notation, (1) is equivalent with

(4)
$$\rho_{J_0}u = F_0\rho_{K_0}u, \qquad \rho_{J_1}u = F_1\rho_{K_0}u + F_2\rho_{K_1}u,$$

where F_0 , F_1 and F_2 are the matrices of (pseudo-)differential operators (where we put $F_{jk} = 0$ for $j \leq k$): $F_0 = ((F_{jk}))_{j \in J_0, k \in K_0}$, $F_1 = ((F_{jk}))_{j \in J_1, k \in K_0}$ and $F_2 = ((F_{jk}))_{j \in J_1, k \in K_1}$. (Evident modifications when empty index sets occur.) They are of $types(-k, -j)_{j \in J_0, k \in K_0}$, $(-k, -j)_{j \in J_1, k \in K_0}$ and $(-k, -j)_{j \in J_1, k \in K_1}$, respectively. (The notion of type is a convenient generalization of type to matrices, the principal symbol type is defined accordingly, see Hörmander [6], or [5].) Note the way in which type and type are minors of matrices with zeroes in and above the diagonal; we shall say that they are type subtriangular.

The operator F_0 , which maps $\prod_{k\in K_0} H^{s-k}(\Gamma)$ into $\prod_{k\in J_0} H^{s-k}(\Gamma)$,

all $s \in \mathbb{R}$, can be supplemented with the identity on $\prod_{k \in \mathbb{K}_0} H^{s-k}(\Gamma)$ to yield an operator Φ from $\prod_{k \in \mathbb{K}_0} H^{s-k}(\Gamma)$ to $\prod_{k \in \mathbb{M}_0} H^{s-k}(\Gamma)$:

$$\Phi \colon \phi_{K_0} \mapsto \psi_{M_0}, \qquad \text{where } \psi_{K_0} = \phi_{K_0}, \quad \psi_{J_0} = F_0 \phi_{K_0}.$$

We write in short

$$\Phi = \begin{pmatrix} I_{K_0} \\ F_0 \end{pmatrix}, \quad \text{where } I_{K_0} = ((\delta_{jk}))_{j,k \in K_0}.$$

The adjoint Φ^* sends ϕ_{M_0} into $\phi_{K_0} + F_0^* \phi_{J_0}$ and is written in short as $\Phi^* = (I_{K_0} F_0^*)$. Φ and Φ^* are (pseudo-)differential operators of types $(-k, -j)_{j \in M_0, k \in K_0}$ resp. $(k, j)_{j \in K_0, k \in M_0}$; with an analogous notation for their symbols one has e.g. $\sigma^0(\Phi^*) = (I_{K_0} \sigma^0(F_0)^*)$.

At the points of Γ one may write A in normal and tangential coordinates

(6)
$$A = \sum_{l=0}^{2m} A_l D_n^l,$$

where the A_l denote differential operators in Γ of orders 2m-l; A_{2m} is a positive function. Then one has the Green's formula

(7)
$$(Au, v) - (u, Av) = \int_{\Gamma} \alpha \rho u \cdot \overline{\rho v} d\sigma, \quad u, v \in C^{\infty}(\overline{\Omega}),$$

where α is a $(2m \times 2m)$ -matrix of differential operators in Γ : $\alpha = ((\alpha_{jk}))_{j,k \in M}$ where each α_{jk} has the form iA_{j+k+1} +differential operators of orders less than 2m - (j+k+1) (we put $A_i = 0$ for i > 2m), cf. Seeley [8], or [5]. We note that $\alpha^* = -\alpha$, and that α is skew-triangular and invertible with α^{-1} a differential operator; α is elliptic of type $(-k, -2m+j+1)_{j,k \in M}$.

THEOREM 1. If \tilde{A} is lower bounded, that is, if there exists $\lambda \in R$ such that $\text{Re}(\tilde{A}u, u) \ge \lambda ||u||_0^2$, $\forall u \in D(\tilde{A})$, then $K_0 = J_1'$, and

(8)
$$F_2 = - (\Phi^* \alpha_{M_0 J_1})^{-1} \Phi^* \alpha_{M_0 K_1}.$$

(Here $\Phi^*\mathfrak{A}_{M_0J_1}$ is invertible when $K_0 = J_1'$, thanks to the special character of \mathfrak{A} and the subtriangularity of F_0 .)

REMARK 1. The case treated by Fujiwara-Shimakura [3], Fujiwara [2] and Grubb [5, 4.3-4.4] is the case where

$$K_0 = J_1' = \{m - p, \cdots, m - 1\}$$

for some $p \le m$, here F_0 and F_2 are 0 by their subtriangularity; the case in Grubb [5, 4.5] takes general K_0 but $F_0 = 0$.

2. The condition for *m*-coerciveness. In accordance with (6), the principal symbol of A may at points $y \in \Gamma$ be written in the form $a(y, \eta, \tau) = \sum_{l=0}^{2m} a^l(y, \eta)\tau^l$, where $a_l(y, \eta)$ denotes the principal symbol of A_l ; here η belongs to the fibre at y of the cotangent bundle $T^*(\Gamma)$, and $\tau \in R$. For each (y, η) with $\eta \neq 0$, the polynomial $a(y, \eta, \tau)$ has exactly m roots $\{\tau_i^+(y, \eta)\}_{i=1}^m$ in $\{\lambda \in C \mid \operatorname{Im} \lambda > 0\}$. We can then form the polynomial $\prod_{i=1}^m (\tau - \tau_i^+(y, \eta)) = \sum_{l=0}^m s_l(y, \eta)\tau^l$, and use the coefficients to define the following $(m \times m)$ -matrix valued functions on the nonzero subbundle $T^*(\Gamma)$ of $T^*(\Gamma)$: $S_0(y,\eta) = ((s_{k-j}(y,\eta)))_{j,k \in M_0}$ and $S_m(y,\eta) = ((s_{m+k-j}(y,\eta)))_{j,k \in M_0}$, where we put $s_l = 0$ for $l \notin [0,m]$. Denoting by I^\times the skew-unit matrix $((\delta_{j,m-1-k}))_{j,k \in M_0}$, we finally introduce $Q = iI^\times \overline{S}_m S_m$, $R = iI^\times \overline{S}_m S_0$, here \overline{S} denotes the complex conjugate of S. (More details in $[5, \operatorname{Chapter } 4]$, in fact $Q = A_{2m}^{-1} \sigma^0(\alpha_{M_0M_1})$, and R is the principal symbol of a certain p-seudo-differential operator in Γ .)

THEOREM 2. \tilde{A} is m-coercive if and only if it satisfies (i) and (ii):

- (i) $K_0 = J_1'$, and $F_2 = -(\Phi^* \alpha_{M_0 J_1})^{-1} \Phi^* \alpha_{M_0 K_1}$.
- (ii) Let $J_2 = \{j | j + m \in J_1\}$, and let $E(y, \eta)$ be the matrix valued function on $T^*_{\bullet}(\Gamma)$:

(9)
$$E = \sigma^{0}(\Phi)^{*}Q_{M_{0}J_{2}}\sigma^{0}(F_{1}) + \sigma^{0}(\Phi)^{*}R\sigma^{0}(\Phi),$$

then $E+E^*$ is positive definite on $T^*(\Gamma)$.

In the affirmative case, \tilde{A} is 2m-regular ($\tilde{A}u \in H^{\mathfrak{s}}(\Omega) \Rightarrow u \in H^{\mathfrak{s}+2m}(\Omega)$, $\forall s \geq 0$), and \tilde{A}^* is also m-coercive and 2m-regular.

3. Explanations and further developments. The first step in our proof of Theorems 1-2 is the transformation of (4) into an equivalent boundary condition of the form

(10)
$$\gamma_{J_0} u = F_0 \gamma_{K_0} u, \qquad \chi_{J_1'} u = G_1 \gamma_{K_0} u + G_2 \chi_{K_1'} u,$$

where γ and χ denote the *m*-vectors of boundary operators: $\gamma = \rho_{M_0}$, $\chi = \Omega_{M_0M_1}\rho_{M_1} + \frac{1}{2}\Omega_{M_0M_0}\rho_{M_0}$, with which Green's formula (7) takes the simple form: $(Au, v) - (u, Av) = \int_{\Gamma} (\chi u \cdot \bar{\gamma} \bar{v} - \gamma u \cdot \bar{\chi} \bar{v}) d\sigma$. Note that $\chi = \{\chi_k\}_{k \in M_0}$, where χ_k is of order 2m - k - 1. There is 1-1 correspondence between the systems (F_0, F_1, F_2) and (F_0, G_1, G_2) (we omit the formulae); G_2^* is again subtriangular.

Assuming, as we may, that the Dirichlet problem for A is uniquely solvable, we define the operator $P_{\gamma,\chi}$ in $\mathfrak{D}'(\Gamma)^m$ by: $P_{\gamma,\chi}\phi = \chi z$, where z is the solution of Az = 0 in Ω , $\gamma z = \phi$ (cf. [4], [5]). $P_{\gamma,\chi}$ is a selfadjoint pseudo-differential operator in Γ of type $(-k, -2m+j+1)_{j,k\in M_0}$ (Vainberg-Grušin [9]); its principal symbol is described in detail in [5, Chapter 4].

THEOREM 3. In addition to the notations introduced above, let Ψ be the operator analogous to Φ with F_0 replaced by $-G_2^*$. Let $X = \Phi(\prod_{k \in k_0} H^{-k-1/2}(\Gamma))$ and let $Y = \Psi(\prod_{k \in J_1'} H^{-k-1/2}(\Gamma))$. Let Φ_1 and Ψ_1 be the restrictions of Φ and Ψ with domains $\prod_{k \in K_0} H^{-k-1/2}(\Gamma)$ resp. $\prod_{k \in J_1'} H^{-k-1/2}(\Gamma)$ and ranges X resp. Y, clearly they are isomorphisms. Finally, introduce the pseudo-differential operator \mathfrak{L}_1 of type $(-k, -2m+j+1)_{j \in J_1'k \in K_0}$:

$$\mathfrak{L}_1 = G_1 - \Psi^* P_{\gamma,\kappa} \Phi.$$

Then \tilde{A} corresponds, in the sense of [4, Theorem III 2.1] (based on the Dirichlet problem), to the operator $L: X \rightarrow Y'$ defined by

$$D(L) = \left\{ \phi \in X \mid \mathfrak{L}_1 \Phi_1^{-1} \phi \in \prod_{k \in J_1'} H^{k+1/2}(\Gamma) \right\},$$

$$L \phi = (\Psi_1^*)^{-1} \mathfrak{L}_1 \Phi_1^{-1} \phi, \quad \text{when } \phi \in D(L).$$

Theorem 1 follows from this by use of [4, Theorem III 4.3]: Lower boundedness of \tilde{A} implies $X \subset Y$, and then by the subtriangularity $\Phi = \Psi$, so that $K_0 = J_1'$ and $F_0 = -G_2^*$, which leads to (8). Note that then X = Y.

Theorem 2 uses [5, Corollary 2.4]: \tilde{A} is *m*-coercive if and only if L is *m*-coercive, i.e., $X \subset Y$ and $\exists c > 0$, $\lambda \in R$ so that

$$\operatorname{Re}\langle L\phi_Y, \phi_{Y'}\rangle + \lambda ||\phi||^2_{\{-k-1/2\}} \ge c ||\phi||^2_{\{m-k-1/2\}} \text{ on } D(L).^2$$

This is equivalent with a similar property for $L_1 = \Psi_1^* L \Phi_1$, which is a certain "realization" of \mathcal{L}_1 , and here the property amounts (besides $\Phi = \Psi$) to the positive definiteness of $\sigma^0(\mathcal{L}_1 + \mathcal{L}_1^*)$ (in fact $E = A_{2m}^{-1} \sigma^0(\mathcal{L}_1)$); the computations resemble those in [5]. The last statement in Theorem 2 uses the *ellipticity* of \mathcal{L}_1 .

REMARK 2. The selfadjoint m-coercive \tilde{A} are characterized by Theorem 2 (i), (ii), plus selfadjointness of $G_1 = \Phi^* \mathfrak{A}_{M_0 J_1} F_1 + \frac{1}{2} \Phi^* \mathfrak{A}_{M_0 M_0} \Phi$ (then E is also selfadjoint).

REMARK 3. Theorem 3 gives a basis for the discussion of many other properties of \tilde{A} , because of the way in which they are preserved by the correspondence between \tilde{A} and L, see [4], [5]. Regarding coerciveness, we mention that:

1° the conditions in Theorem 2 are also necessary and sufficient for $(m-\epsilon)$ -coerciveness with $\epsilon \in [0, 1/2[$ (cf. Fujiwara-Shimakura [3]),

 2° the discussion of (m-1/2)-coerciveness in Fujiwara [2] (related to subellipticity [6]) seems extendable to the present case,

 $^{\|\}phi\|_{\{s-k-1/2\}}$ denotes the norm in $\Pi_{k\in M_0}H^{s-k-1/2}(\Gamma)$.

3° a necessary condition for lower boundedness ("0-coerciveness") is the positive *semidefiniteness* of $\sigma^0(\mathcal{L}_1 + \mathcal{L}_1^*)$ (cf. [5, Theorem 4.3]). Let us mention that lower boundedness +2m-regularity do *not* imply m-coerciveness as in the selfadjoint case; examples using pseudo-differential operators: take \mathcal{L}_1 elliptic with $\mathcal{L}_1^* = -\mathcal{L}_1$.

Concerning extensions of the results to operators A that are merely strongly elliptic, let us mention that the case $K_0 = J_1' = \{m-p, \cdots, m-1\}$ has been treated by Fujiwara [2]; the device of [2] does not extend to our general case.

REFERENCES

- 1. S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math. 15 (1962), 119-147. MR 26 #5288.
- 2. D. Fujiwara, On some homogeneous boundary value problems bounded below, Proc. Japan Acad. 45 (1969).
- 3. D. Fujiwara and N. Shimakura, Sur les problèmes aux limites stablements variationnels, J. Math. Pures Appl. (to appear).
- 4. G. Grubb, A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Sci. Norm. Sup. Pisa 22 (1968), 425-513.
- 5. ——, Les problèmes aux limites généraux d'un opérateur elliptique, provenants de la theorie variationnelle, Bull. Sci. Math. France (to appear).
- 6. L. Hörmander, Pseudo-differential operators and non-elliptic boundary problems, Ann. of Math. (2) 83 (1966), 129-209. MR 38 #1387.
- 7. J. L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Dunod, Paris, 1968.
- 8. R. T. Seeley, Singular integrals and boundary value problems, Amer. J. Math. 88 (1966), 781-809. MR 35 #810.
- 9. B. R. Vainberg and V. V. Grušin, *Uniformly nonelliptic problems*. II, Math. Sb. 73 (115) (1967), 126-154 = Math. USSR Sb. 2 (1967), 111-133. MR 36 #552.

University of Copenhagen, Denmark