MAXIMAL RATES OF DECAY OF SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

BY WALTER LITTMAN

Communicated by M. H. Protter, May 23, 1969

It has been proved by C. Morawetz [2] that if u(x, t) is a solution of the relativistic wave equation

$$u_{tt} - \Delta u + u = 0$$

for all $x = (x_1, x_2, \dots, x_n)$ and t, having finite energy at t = 0, and vanishing in the forward light cone |x| < t, t > 0, then it must vanish identically. On the other hand the author [1] has obtained a generalization of Rellich's Theorem (concerning decay of solutions of the reduced wave equation $\Delta u + u = 0$) to a class of (not necessarily elliptic) equations with constant coefficients of arbitrary order. The present note is intended to announce a number of results which are natural generalizations of and improvements of both aforementioned results. Detailed proofs will appear elsewhere.

Let $P(\xi) = P(\xi_1, \xi_2, \dots, \xi_N)$ be a polynomial with real coefficients. Throughout, we make the following assumptions:

- 1. The real solution set S of $P(\xi) = 0$ is nonempty.
- 2. Grad $P(\xi) \neq 0$ in S, and hence S is a smooth N-1 dimensional manifold.
- 3. The Gaussian curvature of S never vanishes.

Assign a unit normal n to each point of S, varying continuously. The totality of all n fill an open set \mathfrak{N} on the unit sphere, giving rise to an open cone \mathfrak{K} in R^N in the sense that \mathfrak{K} consists of all rn, $n \in \mathfrak{N}$, $r \geq 0$.

Define \mathfrak{N}_{ϵ} as that subset of \mathfrak{N} consisting of points whose (spherical) distance to the boundary of \mathfrak{N} exceeds ϵ . \mathfrak{X}_{ϵ} will denote the cone generated by \mathfrak{N}_{ϵ} . $-\mathfrak{N}$ will denote the set of vectors -n, with $n \in \mathfrak{N}$, and similarly for $-\mathfrak{X}$. \mathfrak{N}' denotes the complement of \mathfrak{N} on the unit sphere, and \mathfrak{K}' the corresponding cone. $\overline{\mathfrak{X}}$ denotes the closure of K.

We will write

$$Lu \equiv P\left(\frac{1}{i} \frac{\partial}{\partial x_1}, \cdots, \frac{1}{i} \frac{\partial}{\partial x_N}\right) u \equiv P\left(\frac{1}{i} \frac{\partial}{\partial x}\right) u.$$

THEOREM I. Suppose, under the foregoing Assumptions 1-3, u(x) is a function satisfying

$$P\left(\frac{1}{i} \frac{\partial}{\partial x}\right) u = 0 \qquad \text{in } R^N,$$

$$u = O(1 + |x|^{\alpha}) \qquad \text{for some } \alpha,$$

$$u = o(|x|^{(1-N)/2}) \qquad \text{uniformly in every } \mathcal{K}_{\epsilon},$$

then $u \equiv 0$ in \mathbb{R}^N .

Assumption 4. Each (complex) irreducible factor P_i has an N-1 dimensional real solution set S_i .

THEOREM II. Under Assumptions 1-4, if

Lu = f has compact support,

$$u = O(1 + |x|^{\alpha})$$
 for some α , uniformly in \mathbb{R}^N ,
 $u = o(|x|^{(1-N)/2})$ uniformly in every \mathfrak{K}_{ϵ} , $-\mathfrak{K}_{\epsilon}$,

then u has compact support.

Note. For the equation $\Delta u + u = 0$ the polynomial $P(\xi) = 1 - |\xi|^2$, and S is the sphere $\xi_1^2 + \xi_2^2 + \cdots + \xi_N^2 = 1$. \mathcal{K} , \mathcal{K}_{ϵ} are simply R^N , and we obtain Rellich's Theorem from Theorem II. On the other hand, for the equation $u_{tt} - \Delta u + u = 0$, setting

$$t = \xi_N, \ P(\xi) = \xi_1^2 + \xi_2^2 + \cdots + \xi_{N-1}^2 - \xi_N^2 + 1,$$

and S is the two sheeted hyperboloid

$$\xi_1^2 + \xi_2^2 + \xi_{N-1}^2 - \xi_N^2 + 1 = 0.$$

If we assign n so that it always points "up", i.e., its Nth component is always positive, then K is the forward light cone, and applying Theorem I we obtain C. Morawetz's result, even a slight improvement. However, if we choose n to point "up" in the "upper" sheet and "down" in the "lower" sheet, K will be the union of the forward and backward light cones, and we get a worse result. Thus n has to be chosen with care.

Assumption 5. (a) $P((1/i)(\partial/\partial x))$ is hyperbolic with respect to x_N . (b) $\overline{\mathfrak{X}}$ does not intersect the set $x_N \leq 0$ except at the origin.

THEOREM III. Under Assumptions 1-5, suppose Lu = 0 for $x_N > 0$, the Cauchy data of u has compact support on $x_N = 0$, $u(x_1, x_2 \cdots x_{N-1}, 0)$ has compact support in R^{N-1} , $u = O(1 + |x|^{\alpha})$ uniformly for $x_N > 0$ for some α ,

 $u = o(|x|^{(1-N)/2})$ uniformly in some open cone \mathfrak{K}^* such that $\mathfrak{K}^* \cap \mathfrak{K}_j \neq 0$ $j = 1, \dots, r$ (where each \mathfrak{K}_j corresponds to the surface S_j and r is the number of these surfaces). Then u = 0 for $x_N > 0$.

ACKNOWLEDGMENT. The results described in this announcement were obtained in part under contract NONR 285(46) while the author was a visiting member at the Courant Institute (1957–58), and in part under Air Force contract AF-AFOSR-883-67 at the University of Minnesota.

BIBLIOGRAPHY

- 1. W. Littman, Decay at infinity of solutions to partial differential equations with constant coefficients, Trans. Amer. Math. Soc. 123 (1966), 449-459.
- 2. C. S. Morawetz, A uniqueness theorem for the relativistic wave equation, Comm. Pure Appl. Math. 16 (1963), 353-362.

University of Minnesota, Minneapolis, Minnesota 55455