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The object of this note is to indicate some results concerning 
(right) skew polynomial rings over right orders in right Artinian rings. 
Detailed proofs will be published elsewhere. 

We recall a few definitions first. A right Artinian ring is a ring with 
unity satisfying the descending chain condition on right ideals. A sub-
ring S of a right Artinian ring Q is called a right order in Q if every 
regular element in 5 is a unit in Q and every q£Q can be expressed as 
q = sc~1, where s, c £ S . 

Let R be a ring with unity and 5 be a unitary subring of R. Suppose 
there exists an element xG-R such that every nonzero rÇzR can be 
uniquely expressed as 

k 

r = X) x"isi 

where 5», O^i^k, are nonzero elements of S and 0 ^ w 0 < • • • <nk 

are integers. Further, suppose there exists a unitary monomorphism 
p: S-+S such that sx = xp(s) holds for every s(ES. In such a situation, 
we denote R as S[x, p] and call it a right skew polynomial ring over S. 
If / is an ideal of S such that p(I)QI then I is said to be p-invariant. 
We have 

THEOREM 1. Let S be a ring with unity which is a right order in a right 
Artinian ring and let R = S[x, p] . Then R is a right order in a right 
Artinian ring Q. Q is semisimple if and only if S is semiprime. Q is 
simple if and only if S is semiprime and every nonzero p-invariant two-
sided ideal of S is an essential right ideal of S. 

We need some more definitions. Let Q be a semisimple (Artinian) 
ring, {/i, • • • , fm} be the set of all the distinct central idempotents 
of Q which are primitive in the centre of Q and let p : Q—>Q be a 
monomorphism. Then there exists a unique permutation <x on 
{l, • • • , m\ such that p(fi)=fc(i) for l ^ i g w . If a = ai • • • ak is a 
decomposition of <r into disjoint cycles then maxig t^m{length <Ti) is 
is called the shuffling index of p. Recall that a ring R has right rank m 
if m is the least integer such that every right ideal of R has a system 
of generators containing at most m elements. 
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THEOREM 2. Let Qbea semisimple right Artinian ring and R = Q [x, p ] 
where p : Q—>Q is a monomorphism of shuffling index m. Then R is a 
semiprime right hereditary right Noetherian ring of right rank m. 

Further details about the structure of R = Q[x, p] are obtained. 
We briefly indicate the main steps in the proof of Theorem 1. 

Firstly, we obtain the following analogue of Faith-Utumi theorem 
[ l ] which may be of some independent interest. 

THEOREM 3. Let S be a right order in a right Artinian ring Q. Then 
there exists a set {et-: l^i^n} of orthogonal primitive idempotents in Q 
with y i? , T ei = 1 and there exist subgroups Mij of eiQej, l^i, jSn, 
such that R = © J j . i M a is a subring of S and a right order in Q. Fur­
ther, each Ma is a right order in the completely primary ring eiQe^ 

I t follows from Theorem 3 that, if S is a right order in a right 
Artinian ring Q and if p : S—>S is a monomorphism then it can be 
uniquely extended to a monomorphism p: Q-+Q; further, if Q[x, p] 
is a right order in a right Artinian ring Q then S[x, p] is also a right 
order in Q. I t then remains to show that Q[x, p] is a right order in a 
right Artinian ring for an arbitrary right Artinian ring Q. 

We firstly consider the case when Q is semisimple; in this case, if 
the shuffling index of p is m then Q[xm, pm] is a semiprime principal 
right ideal ring and Q[x, p] is a finitely generated right module over 
Q[xm, p m ] . If 3) denotes the set of all those right polynomials in 
Q[xm, pm] which have a unit in Q as a leading coefficient, then 2D is 
an exhaustive right divisor set in Q[x, p] . Cf. [4]. 

For the case of an arbitrary right Artinian ring Q, we show that 
every monomorphism p: Q—*Q induces a monomorphism p: Q—>Q 
where Q = Q/J(Q). The lift of the exhaustive right divisor set 3) in 
Q[x, p] is then shown to be an exhaustive right divisor set in Q[x, p] . 
This establishes that Q exists. Our arguments do not need nontrivial 
parts of the internal characterizations of right orders in semisimple 
rings or arbitrary right Artinian rings. Some special cases of The­
orems 1 and 2 are known. Cf. [2], [3], [4]. 
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