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The result to be proved is the following. 

THEOREM. Let C be an arbitrary Jordan curve in Rz. Denote by A 
the closed unit disk in R2. Then there exists a regular minimal surface S 
of the type of the disk spanning C. Specifically, there exists a map 

h:A->R* 

satisfying 
(i) h is continuous in A ; 
(ii) h maps the boundary of A homeomorphically onto C; 
(iii) each component hk of h is a harmonic f unction in the interior of A, 

hence the real part of an analytic f unction <£*. The functions 4>* satisfy 

(i) È(**')2 = o 

and 

3 

(2) ^2 I $£ |2 y* 0 everywhere. 

(iv) the surface S defined by h has least area among all maps of A into 
R3 satisfying (i) and (ii) ; if the area of S is infinite, then every interior 
portion of S has minimum area with respect to its own boundary curve. 

I t is well known that condition (iii) implies that A is a conformai 
immersion of the interior of A onto a regular minimal surface. (See for 
example [l , §11.18].) 

The above theorem was proved by Douglas and Radó (see [l , 
§§VI.l-7]) except for condition (2). Since the functions <£> are analytic 
and not all constant by (ii), it follows that condition (2) can fail a t 
most a t isolated points. Such points are called branch points. I t has 
remained an open question whether these branch points actually 
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occur. We show that they do not. Specifically, what we prove is the 
following. 

THEOREM. Any mapping h which satisfies all the conditions of the 
above theorem except for (2) must also satisfy (2). 

The proof depends on a close analysis of the behavior of a minimal 
surface in the neighborhood of a branch point. The following prop­
erty is used. 

LEMMA. Let h(w) define a minimal surface having a branch point at 
w = 0. Then either 

(a) there exists 5 > 0 such that if 0<\wi\ <ö, 0<\w2\ <5 and 
h(wi) = h(w2), then the tangent planes to h at Wi and w2 are distinct; or 

(b) there exists a local parameter w in a neighborhood of w = 0 such 
that h is invariant under some rotation about tê> = 0. 

Suppose that a solution surface h had a branch point. We may as­
sume that it lies a t the origin. Condition (b) of the lemma would 
contradict property (ii). But using (a) we can replace h in a neighbor­
hood of w = 0 by a mapping having the same boundary values but 
strictly smaller area, contradicting (iv). 

Details will appear elsewhere. 
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