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1. Roughly speaking an octonion plane (P(O) is a plane coor-
dinatized by an octonion (Cayley-Dickson) algebra £). The most 
successful approach to these planes has been made by first construct­
ing a reduced exceptional simple Jordan algebra 3 = ©(£)3, 7) and 
then using 3 to define (P(£)). The results on (P(O) in [2], [7], [8], 
[lO] and [13] for O an octonion division algebra and those in [9], 
[11 ] and [12] for split O were obtained along these lines. However, 
in all of these papers the characteristic of the field is not two. In the 
present paper, we give a definition of octonion planes based on 
quadratic Jordan algebras. This definition is valid for all charac­
teristics and both types of octonion algebras. We also indicate how 
most of the results mentioned above can be derived in this general 
setting. 

We refer the reader to McCrimmon [4] for a definition of a 
quadratic Jordan algebra. Recall also that the set §(£)3, 7) of 3 by 3 
matrices with entries in £> which are symmetric with respect to the 
involution xt-^y"1^ (where 7 = diag{7i, y2, 73}, 0^7»£3>, the field) 
can be endowed with the structure of a quadratic Jordan algebra. 
(See [5].) We shall use the notation of [4] and [5] with the exception 
that we write our operators on the right and define zVx,y = {zxy} 
= xUZtV. We remark that Ux,y = Ux+y— Ux— Uy where in characteris­
tic not two UX = 2R2

X—RX* where yRx = %(xy+yx). Also x* in [5] is 
roughly the adjoint of the matrix x and xXy = (x+y)*— x*— y*. 

2. Let 3 = §(£>3,7) and let x* and x* be two copies of {ax\ 0 j^a£$} 
where x £ 3» is of rank one ; i.e., x 5*0 but x* = 0. We define the octonion 
plane (P(3) to have points #* and lines y*, where x and y are of rank 
one, and relations (cf. [9]) 

(1) #*|:y*, x* incident to y*, if VVtX = 0, 
(2) x*~y*, x* connected to y*t if T(y, x) = 0 , 
(3) x*c^y*t x* connected to y*, if yXx = 0, 
(4) #*~;y*, x* connected to y*, if yXx = 0. 

1 These results are contained in the author's doctoral dissertation written under 
the guidance of Professor N. Jacobson at Yale University. A more detailed paper is 
forthcoming. The author was a National Science Foundation Graduate Fellow while 
at Yale. 
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The groups T, G, and S of semisimilarities, similarities, and norm 
preserving transformations respectively of 3 can be defined as usual. 
If WÇzT has multiplier p and associated isomorphism s, then (xW)# 
=px*W and W-lVx,yW=Vxw,yw for x, y<ES where TV=W*~l and 
T(xW*, y)* = T{x, yW). In particular, W permutes the elements of 
rank one and the map W^: x*^>(xW)*, x**-*(xW)* preserves the re­
lations ( l ) - (4) . Thus, W*-*lW^ defines a homomorphism of T into 
the collineation group of (P(3). Let PT, PG, PS be the images of T, 
G, 5 respectively. The fundamental theorem of octonion planes says 
that PT is the entire collineation group or, more generally, that any 
collineation of two octonion planes is induced by a semisimilarity of 
the quadratic Jordan algebras. Also, since ê(Oa, y) and §(Ö3, Y ' ) 
are norm similar, we see that (P(30 depends only on £), and we write 
<P(0)«<P(3). 

The points w*, v*t w* from a three-point if T(u, VXW)T*0. Four 
points form a four-point if each subset of three points is a three-point. 
A lemma (due to Ferrar for (linear) Jordan algebras) is that if w*, z/*, 
w* are a three-point then u, v, w are pairwise orthogonal primitive 
idempotents in some isotope of 3f. This can be used to show 

LEMMA 1. PS is transitive on three-points while PG is transitive on 
four-points. 

By means of Lemma 1, many of the geometric questions about 
<?(£)) can be reduced to consideration of special points and lines. One 
can show w*, v* are incident to exactly one line if and only if u*qLv*. 
Also, one sees that #*~v* if and only if there exists w*\v* with 
u*~w*. In this case, if x*\v* then either w*~#* or the unique line 
through #* and x* is connected to v*. 

3. An important result on octonion planes is 

THEOREM 1. PS is a simple group. 

The proof of Theorem 1 is based on [l , Lemma 4, p. 39]. By 
Lemma 1 and other transitivity properties of PS, one can show that 
PS is a primitive permutation group of the lines of <P(D). If w £ 3 
is of rank one and i>€:3 with T(u, v) = 0, then the map TUtV = 1 + VUtV 

+ UUUV is a norm preserving map and rTw ,J fixes w*. Tu,v is called 
an algebraic transvection and ^TVtJ is called a transvection. The group 
Hu* generated by ^ TUJ for a fixed u is a normal abelian subgroup of 
the subgroup of PS fixing u*. The other conditions of [l , Lemma 4, 
p. 39], namely that the Hu*'s generate PS and that PS be its own 
derived group follow from 
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THEOREM 2. S is generated by algebraic transvections. 

The main step in the proof of Theorem 2 is the identification of a 
certain subgroup of S with a spin group. Let e be a primitive idem-
potent in 3 and let 3» o be the Peirce 0-space of 3 relative to e. If 
# £ 3 o , then let tf^seX^GSo. Also, one has the quadratic form Q on 
•3o where ()(#) = T(x$). We can now state 

THEOREM 3. Le2 w£Spin(3o, Q) and write u = v\Vi • • • v2r with 
ViESo, UQ(vi) = l. If Wu^UecvoUe^) • • • Uecv^Ue^) where 
0(v) =e+v, then u*-+Wu is an isomorphism of Spin (3 o, (?) onto H, the 
group of norm preserving maps fixing e and stabilizing 3o-

A corollary of Theorem 3 is that the group of automorphisms of 
3 fixing e is isomorphic to Spin(3f0, Q, 1—6) where in general Spin(V, 
Q, c) is defined in terms of the Clifford algebra C(V, Q, c) with base-
point much as Spin(F, Q) is defined in terms of the the Clifford 
algebra C(V, Q). C(V, Q, c), which has been studied by Jacobson 
and McCrimmon in some unpublished notes, is the tensor algebra on 
V modulo the ideal generated by x®x—T(x)x+Q(x)l andc — 1 where 
T(x) = Q(x,c) and Q(c) = 1. 

4. (P(£)) is a projective plane if and only if O is a division algebra. 
In this case, there are two kinds of involutions in PG; those which 
fix a line of points and those which fix a four-point. In characteristic 
two, those of the first kind are transvections while those of the second 
kind are conjugate (under PS) to an involution induced by an auto­
morphism of 3f which is given by applying an automorphism (of 
order two) of O to each entry of the 3 by 3 matrix. A useful result is 

LEMMA 2. J is an automorphism of order two of O in characteristic 
two if and only if one of the following holds: 

(a) O = 33 ©33s, where 23 is a totally isotropic subalgebra of O relative 
to the norm n on £), »(1, s) = 1, and /:&i+&2sH->&i+M, &»•£©. 

(b) £)=<i>2©#$2 where n(x) = 1 and multiplication is given by [6, p. 
45], and J corresponds to 

di + xd2 »-> di + x(d2u), d{ G $2, u = 

Lemma 2 is used to show that any isomorphism of groups PG or 
PS of two projective planes in characteristic two preserves the type 
of an involution. This, in turn, is used to show that any such iso­
morphism is induced by a collineation or correlation of the planes. 

n-
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5. We call w0:x*<-+x* the standard polarity on (P(30 where 3 = &(Oz)-
We consider the group PT(w0) generated by transvections commut­
ing with To. In characteristic two, by using methods similar to those 
in [13] and [12], one can show that the group PT(TTO) is simple and 
if* has more than two elements then Aut $=:PT(TO). The simplicity 
of Aut 3 was shown in [3] in the setting of restricted Lie algebras. 
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