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Let A and B be modules over the ring Z of all integers. In this 
paper, we shall define a new homomorphism 

T: B ® z Hom z (^ , Q/Z) -+ Extl(A, B) 

by T(b®h)=bE0h> for each b®h&B®zHomz(A1 Q/Z) and check 
the properties of T, where EQ: 0-+Z—+Q—+Q/Z—Ï0 is the familiar exact 
sequence and Q is the field of all rational numbers. 

For convenience, in sequel we shall use ®, Horn and Ext for ®z, 
Horns and Ext]?, respectively, and A, B as Z-modules. 

The idea of this paper was obtained from a suggestion of Professor 
S. MacLane. I would like to express my gratitude to him for kind 
help and guidance. 

The detailed definition of F is described by the diagram with each 
commutative square 

bEQh: Q~>B > D2 > A »0(exact) 

b Î push-out f || 

0—>Z >Dt > A >0(exact) 

|| | pull-back I h 

E0: 0 -> Z > Q > Q/Z • O(exact) 

for each &®&£5®HomC4, Q/Z), where &EJ3 is a homomorphism 
from Z to B such that 6(1) =6 . 

By the standard methods as in [3] we know that for bi (i = 0, 1, 2) 
in B and hi (* = 0, 1, 2) in Hom(4 , Q/Z) (bi+b2)Eoho = biEoho+b2Eoh0, 
boEo(hi+h2)=zbQEohi+boEoh2. Furthermore, for each ƒ: A2-+A1 and 
g: BI—ÏBÏ, where Ai ( i= 1, 2) and Bi ( i= 1, 2) are Z-modules, we get 
the Z-homomorphisms 

&: Hom( i 1 } Q/Z) -* Hom( i 2 , Q/Z), f*E: Ext(Au B) -> Ext(At, B) 

g*E: Ext(A, Bt)-+Ext(A, B2) 

and in this case we also know that for each b ® hiEB ® Horn(-41, Q/Z) 
and bi®hEBi®Hom(A9 Q/Z) 

1 This research supported in part by the Office of Naval Research. 
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4 - r ( 6 ® Ai) = fc£0(Ai/) = r - l s ® /J(6 ® AO, 

s î-r(&! ® A) = g(*0£oA = T-g ® larCfti ® A) 

where 1^: Horn (A, Q/Z)—•Hom (-4, Q/Z) is the identity map. This 
description implies that T is natural in each argument. 

In general V is not an isomorphism because if we take A = Z then 
Ext04> B) = Ext(Z, A) = 0 and J5®Hom( i , Ç/Z) = 5 ® H o m ( Z , Ç/Z) 
5^0 when B is not divisible. As a special case the following holds. 

THEOREM 1. If A is a cyclic Z-module Zm(a) of order m with generator 
a then Y is an isomorphism. 

PROOF. T O prove this theorem we should define an isomorphism 

rj: B ® Hom(Zw(a), Q/Z) -> Ext(.4, B) 

by the following way. 
First step. Define 171: B®Horn(Zw(a), Q/Z)-*B/mB by 771(6 ®r) 

=rii(rb®am) =rb+mB for each ô®rG^®Hom(ZT O(a) , (?/Z), where 
wJ3= {mô|&£i?} and 

r: Zm(a) -* Ö/Z such that r(a) = — ; 
m 
1 

am'. Zm(a) —> Ç/Z such that atm(a) = — • 
m 

If we define ijf1: B/mB^B®nom(Zm(a), Q/Z) by î y - ^ è + w ^ ) 
= ô®<*TO for each b+mB^B/mB then we know that rçfSy^ the iden­
tity map in 5 ® Horn (A, Q/Z), rç^-^the identity map in B/mB 
which implies that 771 is an isomorphism. 

Second step. Define rj2: B/mB—*Ext(Zm(a), B) by rj2(b+mB)=Eb 

for each b+mBÇ^B/mB, whereEb: 0-+B!L>Eb?-*Zm(a)-+0 (exact) such 
that for a(u) =a(uÇzEb)K(b) =?nu. Then 972 is an isomorphism (see 
Proposition 1.1 on p. 64 of [3]). 

Third step. We shall define 17=772171 by rj(b®r) = rj(rb®am) =*Erb for 
each ô®rGS®Hom(Z m ( a ) , Q/Z), i.e., 

V = W i : 5 ® Horn(Zm(a), Q/Z) -> £ / w £ -> Ext(Zm(a), 5) 

6 ® r = rô ® aTO •-» rö + WJB »-» £ r 6 

then 17 is an isomorphism. 
Using 17 we shall verify our theorem. To do so, we have to prove 

that r= i7 by showing that Erb~bEor. By our definitions we get that 
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OJ 

a 

0 

-* 0 (exact) 

because (O, {r, 0)) = (rb, 0) in Z>2 (see the first part of this paper). 
Therefore Erb = bE0r for each 6®r£.B®Hom(^4, Q/Z)9 which means 
77 = r , and we complete our proof. 

Let A be finite then A is a direct sum of a finite number of cyclic 
Z-modules, i.e., A «= ]£Xi Zmi(Zmi: cyclic Z-module of order mt). 
Using Theorem 1 the following is easily proved. 

COROLLARY 1. With the above situation 

V: B® Homf £ Z^, Q/z\->Ext(J^Z^B) 

is an isomorphism. {Note: Horn (A ©5, C) = Horn (̂ 4, C) ©Horn (5, C) 
<wd Ext(i4 ©5, C) =»Ext(4, C) ©Ext(£, C).) 

COROLLARY 2.J/-4 = X^«^« {direct sum) and B is finitely generated 
then T: B® Horn {A, Q/Z)-*Ext{A, B) is an isomorphism, where each 
A a is finite. 

PROOF. We know that 

Horn ( £ A*, Q/z) S I I Hom(ia , Q/Z), 
\ a / a 

Ext ( £ 4-, B) S I I Ext(i4«, 5) 
\ a / a 

(see pp. 97-98 of [l])and 
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B <g> IE Hom(^, Q/Z) ^ I I (B ® Hom(^a, Q/Z)) 
a a 

because B is finitely generated (see p. 32 of [l]) . By Corollary 1 for 
each a Ta: B® Horn {A at Q/Z)-+Ext(Aa, B) is an isomorphism and 
therefore T is also an isomorphism. 

Next, we shall consider the case which A is an infinite torsion 
module, i.e., A =inj lima Aa(Aa: finite). In this case, in general 

T: B ® Hom(,4, Q/Z) -> Ext(^, B) 

is not an isomorphism as in the following example. 
EXAMPLE. Set B = Q and A = Q/Z. Since Q/Z is divisible 

Hom((?/Z, Q/Z) is torsion-free (see Corollary 1.5 on p. 128 of [l]) . 
Therefore Q®Hom(Q/Z, Q/Z)5*0. On the other hand Ext(Q/Zt Q) 
= 0 (Q is injective). This shows that T is not an isomorphism. But the 
following holds. 

THEOREM 2. If A is an infinite torsion module and B is finitely gen­
erated then r is an isomorphism. 

PROOF. Put -4=inj lim« Aa(Aa: finite). Let us assume <t>a'a-Aa 

—*Aa' for a<a' and <t>a:Aa-*A (injection) such that 4>a'<l>a'a—<t>a. 
We then have the commutative diagram 

£®Hom(,4 , 0 /Z)^5®projl im aHom(^ a , Q/Z) 

l s®Hom(0 a , Q/Z) / \ l*®Hom(* t t,, Q/Z) 
/ lB®Hom(*.,a , Q/Z) \ 

5 ® H o m ( ^ a , Q/Zy £®Hom(,4 a , , Q/Z). 

Therefore there exists a unique homomorphism 0 as in the diagram 
with each triangle commutative 

£<g>HomG4, e/Z)££B<g>proj lim HomUa, Q/Z) 

U®Hom(*., Q/Z) . 1*<8> Horn (<£«,, Q/Z) 
3!f 

5®HomUa , Q/Z)<_*?lproj lima^^HomU^Q/ZJJ-l'^B^HomUa,, Q/Z), 

where 4>J and 0«' are projections. On the other hand, since 

Ta: B ® Hom(,4«, Q/Z) -> Ext(Aa, B), 

for each a, is an isomorphism by Corollary 1 we have the isomorphism 
proj lima r a : proj lim«(5®Hom(^4, Ç/Z)^proj lima Ext(-4a, B). 
Therefore, by the definition of the inverse limits and the naturality 
of T we have two commutative diagrams 
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Ext(i4, B) 

Ext(*«, B) Extfo«,, B) 

Ext(AajB)^^pro]lima(B®Hom(AaiQ/Z))^Ext(Aa^B) 

and 

B®Kom(Aa, B)<—proj Um«CB®Hom(;4«, Q/Z))—>B®Uom{Aa, Q/Z) 

Ext(i4a , B) <-

SÉ | proj lim a r a /; ^ j IV 
proj lim« Ext(4«, Q/Z) - ^ Ext(4«, Ç/Z), 

where #« ' and <^' are projections. 
Moreover, by the naturality of T the diagram 

Is ® Homfoi, Ö/Z) 
,8 ® Hom(,4a, Q/Z) < —^—B ® Hom(il, Q/Z) 

Ext(4„, B) 
Extfo, B) 

IT 
Ext(A, B) 

is commutative. We then have the commutative diagram: 

B® Hom (4, Q/Z) •Ext(^4, B) 

3! proj lim« Ta-0 \ / 3!? 

proj lim« Ext (Aa, B) 

By our hypothesis £: Ext(^4, B)==proj lim« Ext(^4«, B) (see page 
793of [2]) and proj limJVfl: B®Hom(i4, Q/Z) = proj lim«Ext(^a, B) 
(Note: proj lima(5®Hom(^«, Q/Z))^proj lim» Ext(^«, B) and B is 
finitely generated (see p. 32 of [l]). Therefore Y is an isomorphism, 
as asserted. 
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