A NOTE ON FUNCTORS Ext OVER THE RING Z!
BY KEEAN LEE
Communicated by Saunders MacLane, December 11, 1968

Let A and B be modules over the ring Z of all integers. In this
paper, we shall define a new homomorphism

I': B ®; Homz(4, 0/Z) — Extz(4, B)

by I'(b ®k) =bEh, for each bQhEB® zHomz(4, Q/Z) and check
the properties of ', where Ey: 0-Z—Q—Q/Z—0 is the familiar exact
sequence and Q is the field of all rational numbers.

For convenience, in sequel we shall use ®, Hom and Ext for ®,
Homy and Ext}, respectively, and 4, B as Z-modules.

The idea of this paper was obtained from a suggestion of Professor
S. MacLane. I would like to express my gratitude to him for kind
help and guidance.

The detailed definition of I' is described by the diagram with each
commutative square

bEoh: 0— B — Dy A O(exact)
b 1 push-out 1 I
0—-2Z D, > A O(exact)
I | pull-back |7
Ey: 02 > Q »Q/Z > 0(exact)

for each b®2EB®Hom(A4, Q/Z), where bEB is a homomorphism
from Z to B such that b(1) =b.

By the standard methods as in [3] we know that for b; (=0, 1, 2)
in B and h( (i=0, 1, 2) in HOII‘!(A, Q/Z) (b1 +bz)tho=b1tho+b2tho,
boEo(hy1+h2) =boEoh1+boEhs. Furthermore, for each f: 4:—A4, and
g: Bi— By, where A; (1=1, 2) and B; (=1, 2) are Z-modules, we get
the Z-homomorphisms

fa: Hom(As, 0/Z) — Hom(4s, Q/Z), fz: Ext(4s, B) — Ext(4s, B)
g;;: Ext(4, B;) — Ext(4, B,)

and in this case we also know that for each 6@k EB ®Hom(44, Q/Z)
and b;®EB;@Hom(4, Q/Z)
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fa-T(b ® ) = bEo(hef) = T-15 ® fu(b ® ),
gr-T(bs ® h) = g(b:)Eoh = T'g ® 1a(b: ® h)

where 15: Hom(4, Q/Z)—Hom(4, Q/Z) is the identity map. This
description implies that I' <s natural in each argument.

In general T' is not an isomorphism because if we take 4 =Z then
Ext(4, B) =Ext(Z, A)=0and B®Hom(4, Q/Z)=B®Hom(Z, Q/2)
#0 when B is not divisible. As a special case the following holds.

THEOREM 1. If A is a cyclic Z-module Z,,(a) of order m with generator
a then T is an isomorphism,

Proor. To prove this theorem we should define an isomorphism
7: B ® Hom(Zn(a), Q/Z) — Ext(A4, B)
by the following way.
First step. Define 9i: B Hom(Z,.(a), Q/Z)—B/mB by n(b®r)

=m1(rb Qay,) =rb+mB for each b@rEBQ@Hom(Z,(a), Q/Z), where
mB={mb|bEB} and

r: Zu(@) > Q/Z such that r(a) =

J

S|~ 3|~

am: Zm(a) > Q/Z suchthat aw(a) =

If we define u;': B/mB—B®Hom(Zn(a), Q/Z) by n7'(b+mB)
=bQ®a, for each b+mBEB/mB then we know that 5 'n = the iden-
tity map in BQHom(4, Q/Z), mm~'=the identity map in B/mB
which implies that 5, is an isomorphism.

Second step. Define n;: B/mB—Ext(Zn(a), B) by n(b+mB)=FE,
for each b+mB&EB/mB, where Ey: 0—BX, Ey 25 Z,,.(a)—0 (exact) such
that for o(u) =a(uEEy)x(b) =mu. Then 75, is an isomorphism (see
Proposition 1.1 on p. 64 of [3]).

Third step. We shall define n =19, by 7(6 ®7) =5(rb Qay,) = En for
each b®@r&EB®Hom(Z,(a), Q/2), i.e.,

= nem1: B ® Hom(Z.(a), Q/Z) — B/mB — Ext(Zn(a), B)
b@r=1r0Q an>rb+ mB— E,

then 7 is an isomorphism.
Using n we shall verify our theorem. To do so, we have to prove
that I'=7 by showing that E,=bE. By our definitions we get that
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E.: 0— B — E,;, — Zn(a) — 0 (exact)
w (\V)
W u = a

rb;*—-*mu'—) 0

and
bEyr: 0—» B—— D;——— Z,(a) — 0 (exact)

w w

r
(0, (— ) a)) = q

m

(0, (r, 0))
W |

rb > (rb, 0) - 0

because (0, (r, 0)) = (rb, 0) in D, (see the first part of this paper).
Therefore E.; =bEy for each b®@rEBQ®Hom(4, Q/Z), which means
n=T, and we complete our proof.

Let 4 be finite then A4 is a direct sum of a finite number of cyclic
Z-modules, ie., A= .2 Zn.(Zm;: cyclic Z-module of order m;).
Using Theorem 1 the following is easily proved.

COROLLARY 1. With the above situation

I': B® Hom< i Zmyy Q/Z)—) Ext( Z": Zm,, B)

=1 t=1

is an isomorphism. (Note: Hom(4 & B, C) =Hom(4, C) ®Hom(B, C)
and Ext(A ® B, C) =Ext(4, C) ®Ext(B, C).)

COROLLARY 2. If A=Y, A (direct sum) and B is finitely generated
then T': BQHom(4, Q/Z)—Ext(4, B) is an isomorphism, where each
A, is finite.

Proor. We know that

Hom( > Aa, Q/Z) = [] Hom(4., Q/2),

Ext( ; Agy B) = H Ext(A4q, B)

(see pp. 97-98 of [1]) and
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B ® J] Hom(4, 0/2) =~ ] (B ® Hom(4., 0/Z))

because B is finitely generated (see p. 32 of [1]). By Corollary 1 for
each a Ta: BHom (4., Q/Z)—Ext(A4,., B) is an isomorphism and
therefore T is also an isomorphism.

Next, we shall consider the case which 4 is an infinite torsion
module, i.e., 4 =inj lim, 4 .(4 .: finite). In this case, in general

I': B ® Hom(4, Q/Z) — Ext(4, B)

is not an isomorphism as in the following example.

ExaMPLE. Set B=Q and A=Q/Z. Since Q/Z is divisible
Hom(Q/Z, Q/Z) is torsion-free (see Corollary 1.5 on p. 128 of [1]).
Therefore Q®@Hom(Q/Z, Q/Z)#0. On the other hand Ext(Q/Z, Q)
=0 (Q is injective). This shows that I' is not an isomorphism. But the
following holds.

THEOREM 2. If A is an infinite torsion module and B is finitely gen-
erated then T is an isomorphism.

ProoF. Put A =inj lim, 4,(4.: finite). Let us assume @qra: Ao
— A, for a<a’ and ¢q: Aa—A (injection) such that @udara=¢a.
We then have the commutative diagram

B® Hom(/l,/Q/Z)gB@proj lim,Hom(4., Q/Z)

1®Hom(¢., Q/2) 1:®Hom(¢a, Q/2)
IB ®H0m(¢a'm Q/Z)

B®Hom(A4., Q/Z)«— B®Hom(4., Q/2).

Therefore there exists a unique homomorphism @ as in the diagram
with each triangle commutative

B®Hom(4, Q/Z)=2B®proj lim Hom(4., Q/Z)

1 ®Hom(¢s, Q/Z) 2 1z ®Hom(¢a, Q/2)

B®Hom (44, 0/2) 2?2 proj lim,(B®Hom (44, 0/Z))_*<,B®Hom(4., 0/Z),

where ¢/ and ¢/ are projections. On the other hand, since

T.: B ® Hom(A,., Q/Z) — Ext(A4., B),
for each a, is an isomorphism by Corollary 1 we have the isomorphism
proj lim, T'.: proj lim,(B®Hom(4, Q/Z)=proj lim, Ext(4., B).
Therefore, by the definition of the inverse limits and the naturality
of I' we have two commutative diagrams
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Ext(4, B)
Ext(¢a, B) Ext(¢a, B)

Ext(dq, B) 22 _projlim,(B®Hom (4. 0/Z)) $«, Ext(4u, B)

and
B®Hom(A4,, B)«—projlim.(BHom(4,,Q0/2Z))—BQHom(4., Q/Z)
= | T = projlim,I'y | T
Ext(da, B) «— proj lims Ext(4da, 0/Z) —> Ext(4a, Q/Z),

where ¢4’ and ¢., are projections.
Moreover, by the naturality of I' the diagram

13 @ Hom(¢., 0/2)

B ® Hom(4,., Q/2) B ® Hom(4, Q/2)
I.l ir
Ext(4q, B) Ext(@, B) Ext(4, B)

is commutative. We then have the commutative diagram:

B® Hom(4, Q/Z)—-»Ext(A B)

3! proj lim, I'x -0 \/!'E

proj limy, Ext (4., B)

By our hypothesis &: Ext(4, B)=proj lim, Ext(A « B) (see page
793 of [2]) and proj lim,I',-6: B® Hom(4, Q/Z) =proj lim, Ext(4 ., B)
(Note: proj lim.(B®Hom(4 ., Q/Z))=proj lim, Ext(4 ., B) and B is
finitely generated (see p. 32 of [1]). Therefore I' is an isomorphism,
as asserted,
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