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I. Introduction. Let T be an operator on a Banach space B. Let 
cr(T), the spectrum of T, lie on a line, a circle, or, more generally, a 
smooth curve. If the resolvent RZ(T) = (T—zI)~l satisfies a growth 
condition with respect to <r(T), it is possible, in many cases, to de­
velop an invariant subspace decomposition for T. We mention ex­
plicitly the work of Bartle [ l ] , Godement [4], Leaf [ó], Lorch [7], 
Schwartz [13], Wermer [19], and Wolf [20]. Since, in the references 
cited, none of the subspaces is necessarily complemented by an 
invariant subspace, one can not expect this invariant subspace de­
composition to generate a countably additive resolution of the 
identity. Such a spectral resolution is precisely the achievement of 
the Dunford theory [3], but there it was necessary to assume a 
second condition in order to obtain it. This condition (Dunford 
Boundedness) is not easy to verify in practice. 

In this note, we will study several situations in Hubert space, 
where a strong growth condition on the resolvent is sufficient to 
guarantee a countably additive resolution of the identity, i.e., the 
operator turns out to be similar to a normal operator. The results in 
§3 generalize, and are dependent on, some recent work of Gokhberg 
and Krein. We will only sketch proofs. Complete details will appear 
in [ló] and elsewhere. 

From now on, the underlying space is always a Hubert space. All 
operators are bounded. By a smooth Jordan curve, we mean a Jordan 
curve of class C2 (in the complex plane). 

I I . In this section we study conditions on the resolvent which in­
sure normality. 

LEMMA 1. Let \\(T-\)~l\\^\/d where 0<d<|X|. Then 

IIV | x | 2 - j y II d 

THEOREM 1. Let U be an open set and let a{T)C\U lie in the smooth 
Jordan curve C. Let \R^{T)\ ^ 1/dist [X, C]for\G U. Then T= TX®T* 
where Ti is normal, a(7\) = closure [<T(T)r\U] and <r(T2)C.a(T)r\U', 

1 The author gratefully acknowledges the support of the National Science Founda­
tion. 
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(© denotes orthogonal direct sum.) 

The proof of Theorem 1 is too long to even sketch. I t relies heavily 
on successive application of Lemma 1 coupled with material on the 
numerical range found in [IS]. 

COROLLARY 1. Let a(T) lie in the smooth Jordan curve C. Let 
\\Rx(T)\\ gl/dist[\, C] f or \ in a neighborhood of C. Then T is normal. 

Corollary 1 was proved for C = Reals by Nieminen [lO] and 
C = unit circle by Donoghue [2 ] with a slightly stronger growth con­
dition. 

Since \\Rx(T)\\ =l /dis t [X, <r(T)] for any hyponormal operator T, 
Theorem 1 is useful in dealing with this class of operators. (See for 
example the question raised by Putnam in [12]; also Putnam [ l l ] 
and Stampfli [14].) 

DEFINITION. An operator T on a Hilbert space H is in <BP if there 
exists a Hilbert space KZ)H, a constant p > 0 , and a unitary operator 
U on K, such that Tn=pPUnP for w = 1, 2, • - • , where P is the self-
adjoint projection of K on H. 

COROLLARY 2. If r £ e a and r _ 1 G ^ , then Tis unitary. 

I I I . In this section, we will generalize some recent work of Gokh-
berg and Krein [5]. First, we state their theorem which depends on a 
deep result of Nagy and Foiaç [ l7] . 

THEOREM (G-K). Let T be a contraction. If \\R\(T)\\ £K/(1 - |X| ) 
for | X | < 1, then T is similar to a unitary operator. 

The next lemma is a modest improvement. 

LEMMA 2. Let 

(i) \\Rx(T)\\£l/(\\\-l)for \\\>l,and 
(ii) \\R^T)\\^K/(l--\\\) for | X | < 1 . 

Then T is similar to a unitary. 

PROOF. Condition (i) implies that W(T), the numerical range of 
7\ lies in the unit disc (and conversely). Hence, by a result of Nagy 
and Foiaç [18], T = QAQ~1 where A is a contraction. But ||i?x(^4)|| 
g | |Q| | llQ-^lJKT/Cl —|X|) for |X| < 1 . Thus, A and hence T a r e similar 
to a unitary operator by the previous theorem. 

THEOREM 2. Let c(T) lie in the unit circle. Let 
(i) \\R(T)\\gK/(l-\\\) for a < | X | < l , and 
(ii) | | U ( r ) ] | s i / ( | X | - l ) / ö r l < | X | < j 8 . 

Then T is similar to a unitary operator. 
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PROOF. By suitable use of Lemma 1, we can reduce the proof to 
the case where T satisfies (i) and (ii) in a sector (from 0 to infinity). 
Let ô be a small arc of the unit circle, contained in this sector. There 
exists an invariant subspace H$ of T such that <T(T\HS)C.S- More­
over, it follows from the Lorch approximation theorem [7], and the 
growth conditions that W(T\HS) is contained in the unit disk. 
Hence, T\Hs is similar to a unitary by Lemma 2. Unfortunately, it 
is not clear that there exits a subspace complementary to HB which is 
invariant under T. This difficulty can be overcome by cutting T 
down to a subset of 5 and estimating the angle between appropriate 
subspaces. Repeating this argument a finite number of times com­
pletes the proof. 

REMARK. I t makes no difference if the roles of K and 1 are inter­
changed in (i) and (ii). Moreover, (i) and (ii) are not needed for the 
entire circle, but only in a neighborhood of cr(T). In fact, one can 
even recover a variation of Theorem 1. Let U be an open set and let 
UC\G{T)J£0 lie in the unit circle. Further, let R\(T) satisfy (i) and 
(ii) for X £ U. Then, T= Ti+T2, where T\ is similar to a normal and 
<T(TI) can be chosen to be any closed subset of a(T) contained in U. 
( + denotes direct sum, i.e., the underlying spaces are complemen­
tary.) 

Theorem 1 can be used to obtain results on operators with real 
spectrum. 

COROLLARY 1. Let <r(T) be real. Let 
(i) | |i?x(r)| | ^ l / I m X / o r O < I m X < a , and 
(ii) \\Rx(T)\\ £K/\lm\\ for / ? < I m X < 0 . 

Then T is similar to a selfadjoint operator. 

Since growth conditions on the resolvent are usually applied near 
the spectrum or at infinity, the next corollary, at first glance, seems 
surprising. 

COROLLARY 2. Let <r(T) be real Let \\R\(T)\\ g l / I m X for X in a 
neighborhood of the parabola 2y = x2+l(z = x+iy). If \\R\(T)\\ ^ 
1 / | ImX| for X in a neighborhood of 2y = — (x2+l) then T is selfadjoint. 
If \\R\(T)\\ ^K/ |lmX| /tfr/3<ImX<0, then T is similar to a selfadjoint 
operator. 

Corollaries 1 and 2 follow easily by taking the Cayley transform of 
T. The remark following Theorem 2 applies here as well. 

IV. The growth condition on the resolvent in the preceding sec­
tion can not be substantially weakened as seen by the following 
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EXAMPLE (MCCARTHY AND SCHWARTZ [9], A. S. MARKUS [8]). 

There exists an operator T on Hubert space, such that the spectrum 
of T is real, and ||JRX(2")|| ûK/\ ImX| for all X. However, T is not 
similar to a selfadjoint operator. 
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