COMPACT FAMILIES OF ALMOST PERIODIC FUNCTIONS

BY A. M. FINK

Communicated by Henry Helson, December 18, 1968

A family of almost periodic functions on the reals, R, to complex n-space, C^n , is compact in the uniform topology if and only if it is (a) closed, (b) uniformly bounded, (c) uniformly equicontinuous, and (d) uniformly almost periodic. This is a result of Bochner [1]. Of the above criteria, part (d) seems to be the most difficult to verify. We offer two results in this direction.

Recall that the family A is uniformly almost periodic if for each $\epsilon > 0$, the set $T(A, \epsilon) \equiv \bigcap_{f \in A} \left\{ \tau \colon \left| f(x+\tau) - f(\tau) \right| < \epsilon \text{ for all } x \in R \right\}$ is relatively dense. For A a singleton, this is Bohr's definition of an almost periodic function. Let $\exp(\phi)$ be the set of real numbers λ , such that $\lim_{T \to \infty} (1/T) \int_0^T \phi(x) e^{-i\lambda x} dx \neq 0$. If A is a compact family then $\exp(A) = \bigcup_{f \in A} \exp(f)$ is countable. Hence we will consider sets of the following form. Let $C(M, \Lambda) \equiv \left\{ \phi \mid \phi \text{ is almost periodic, } ||\phi|| \leq M, \exp(\phi) \subset \Lambda \right\}$ where M is a fixed real number, $||\cdot||$ is the supremum norm, and Λ is a given countable set of reals.

THEOREM 1. If Λ has no finite limit point, then any uniformly equicontinuous family in $C(M, \Lambda)$ has compact closure.

THEOREM 2. If $A \subset C(M, \Lambda)$ is the family that is uniformly Lipschitz, i.e.: there is a K > 0, such that $f \in A$ if and only if $|f(t) - f(s)| \le K|t - s|$ for all t and s, then A has compact closure if and only if Λ has no finite limit point.

In fact, if Λ has no finite limit point, then A is a convex compact set having the fixed point property.

If Λ has no finite limit point, then let $\Lambda = \{\lambda_n\}$ with $|\lambda_1| \leq |\lambda_2|$ $\leq \cdots$. By a result of Bredhina [2], there exist polynomials $\sigma_n(f, x) = \sum_{k=1}^n a_k(f)e^{i\lambda_k x}$ such that $||f-\sigma_n(f)|| \leq 10$ $\omega_f(1/|\lambda_n|)$ where $\omega_f(x) = \sup\{|f(y)-f(z)|: |y-z| \leq x\}$. For any $\epsilon > 0$, the polynomials $\{\sigma_{n_0}(f)\}_{f \in A}$ are an ϵ -net for some n_0 . This collection is uniformly almost periodic; hence so is A.

If the family A is Lipschitz and Λ has a finite limit point, one constructs a closed ball of an infinite dimensional space in A. These are not compact. One uses the result of Bochner [3] to the effect that if $\exp(\phi)$ is a bounded set, then ϕ' exists and $\|\phi'\| \le T \|\phi\|$ where T is a

bound for $\exp(\phi)$. That is, for such functions, the Lipschitz condition is automatically satisfied.

Details of the above outline appear in [4] where an application of the fixed point property is also given.

REFERENCES

- 1. S. Bochner, Beiträge zur Theorie der fastperiodischen Funktionen. I. Funktionen einer variablen, Math. Ann. 96 (1926), 119-147.
- 2. E. A. Bredhina, Some problems in summation of fourier series of almost periodic functions, Amer. Math. Soc. Transl. (2) 26 (1963), 253-261.
- 3. S. Bochner, Properties of fourier series of almost periodic functions, Proc. London Math. Soc. 26 (1927), 433-452.
- 4. A. M. Fink, Compact families of almost periodic functions and an application of the Schauder fixed point theorem, SIAM J. Appl. Math. (to appear).

IOWA STATE UNIVERSITY, AMES, IOWA 50010