MAXIMAL ABELIAN SUBALGEBRAS IN HYPERFINITE FACTORS

BY OLE A. NIELSEN

Communicated by George Mackey, August 20, 1968

1. Introduction. In this note we outline a construction which, together with a new invariant, gives still more maximal abelian subalgebras of the hyperfinite factor of type II₁. We also state some results concerning maximal abelian subalgebras of hyperfinite factors of type III. Complete proofs will appear elsewhere.

First we will establish some notation and terminology. Let \mathfrak{M} and \mathfrak{N} be maximal abelian subalgebras of a factor \mathfrak{A} . We call \mathfrak{M} and \mathfrak{N} equivalent (in \mathfrak{A}) if there is an automorphism of \mathfrak{A} carrying \mathfrak{M} onto \mathfrak{N} . Let $N(\mathfrak{M}) = N^1(\mathfrak{M})$ be the subalgebra of \mathfrak{A} generated by all those unitary operators U in \mathfrak{A} with $U\mathfrak{M}U^*=\mathfrak{M}$, and let $N^j(\mathfrak{M}) = N(N^{j-1}(\mathfrak{M}))$ for j>1. Following Dixmier [2] and Anastasio [1], we call \mathfrak{M} regular if $N(\mathfrak{M}) = \mathfrak{A}$, semiregular if $N(\mathfrak{M})$ is a factor distinct from \mathfrak{A} , and n-semiregular ($n \geq 2$) if no $N^j(\mathfrak{M})$, $1 \leq j < n$ is a factor but $N^n(\mathfrak{M})$ is. We say that \mathfrak{M} has proper [improper] length n if n is the smallest positive integer such that $N^n(\mathfrak{M}) = N^{n+1}(\mathfrak{M})$ and if $N^n(\mathfrak{M}) = \mathfrak{A}$ [$N^n(\mathfrak{M}) \neq \mathfrak{A}$]. Notice that the length of a maximal abelian subalgebra is invariant under equivalence. We are now able to state our main results.

THEOREM 1. For each choice of n=2, 3 and k=0, 1, 2, \cdots , the hyperfinite II_1 factor contains an n-semiregular maximal abelian subalgebra of improper length n+k.

THEOREM 2. Let \mathfrak{A} be one of the hyperfinite type III factors of Powers (cf. [5]). Then \mathfrak{A} contains a regular and two inequivalent semiregular maximal abelian subalgebras. Also, for each choice of n=2, 3 and $k=0, 1, 2, \cdots$, \mathfrak{A} contains two n-semiregular maximal abelian subalgebras, one of proper length n+k and one of improper length n+k.

REMARKS. (1) These results are a summary of the author's doctoral thesis written at the University of British Columbia under the supervision of Dr. D. Bures.

- (2) Anastasio has shown that Theorem 1 holds with "improper" replaced by "proper" [1]. Because of a previous remark, our subalgebras are mutually inequivalent as well as inequivalent to those of Anastasio.
- (3) \mathfrak{M} has proper length n if and only if \mathfrak{M} has length n-1 in the sense of Tauer [7].

- (4) Pukánszky has given a general method for constructing maximal abelian subalgebras in a wide class of type III factors [6]; but, because of an error in the proof of Lemma 17, the types of these subalgebras is not known.
- 2. Construction of II₁ factors. Let G be a countably infinite group with identity e and let Δ be the set of all functions with finite support from G into $\{0, 1\}$. Under point-wise addition modulo 2, Δ becomes an abelian group. For $g \in G$ and $\alpha \in \Delta$, define elements $g\alpha$ and αg in Δ by

$$(g\alpha)(h) = \alpha(g^{-1}h)$$
 $(h \in G),$
 $(\alpha g)(h) = (\alpha(g))^2 - 2\alpha(g) + 1$ $h = g,$
 $= \alpha(h)$ otherwise.

Let H be a Hilbert space with orthonormal basis $(\phi_{\alpha})_{\alpha \in \Delta}$. For each $g \in G$, define operators F_{θ} and U_{θ} on H by

$$F_{g}\phi_{\alpha} = \frac{1}{2}\phi_{\alpha} + \frac{1}{2}\phi_{\alpha g} \qquad (\alpha \in \Delta),$$
 $U_{g}\phi_{\alpha} = \phi_{g\alpha} \qquad (\alpha \in \Delta).$

Notice that $\{F_{\sigma}: g \in G\}$ is a commuting family of projections, that $g \to U_{\sigma}$ is a unitary representation of G on H, and that $U_{\sigma}F_{h}U_{\sigma}^{*}=F_{\sigma h}$ for all g, $h \in G$. It is easy to verify that \mathfrak{M} , the von Neumann algebra on H generated by $\{F_{\sigma}: g \in G\}$, is maximal abelian in $\mathfrak{L}(H)$ (use [3, p. 109, Exercise 5] and ϕ_{0}). Let $\mathfrak{B}(G)$ be the von Neumann algebra on $H \otimes K$ generated by

$$\{(M \otimes I)(U_q \otimes V_q): M \in \mathfrak{M}, g \in G\},\$$

where K is the Hilbert space of all complex-valued square-summable functions on G and V_0 is the unitary operator on K satisfying $(V_0x)(h) = x(g^{-1}h)$ for all $h \in G$, $x \in K$. Using some standard results from [3, pp. 127-137], one proves

LEMMA 3. $\mathfrak{B}(G)$ is a factor of type II₁ which is hyperfinite whenever G is the increasing union of a sequence of finite subgroups.

3. Subalgebras of II₁ factors. For a subgroup G_0 of G, let $N(G_0)$ be the normalizer of G_0 in G and let

$$\mathfrak{M}(G_0) = \mathfrak{R}(U_a \otimes V_a: g \in G_0).$$

Notice that $\mathfrak{M}(G_0)$ is always a proper subalgebra of $\mathfrak{B}(G)$. In the following three lemmas, G_0 denotes a subgroup of G.

LEMMA 4 (Cf. [6, LEMMA 14]). $\mathfrak{M}(G_0)$ is maximal abelian in $\mathfrak{B}(G)$ if $\{ghg^{-1}: g \in G_0\}$ is infinite whenever $h \in G - G_0$.

PROOF. A straightforward calculation.

Lemma 5. $\mathfrak{M}(G_0)$ is a factor if and only if all nontrivial conjugate classes of G_0 are infinite.

PROOF. Observe that $\mathfrak{M}(G_0)$ is *-isomorphic to the group operator algebra over G_0 , and apply [4, Lemma 5.3.4].

Lemma 6 (Cf. [6, Lemma 17]). Suppose that G_0 satisfies: given a finite subset $F \subset G$ and a $g \in G$, there are infinitely many elements $g_0 \in G_0$ such that

- (i) $h, k \in F$ and $hg_0k^{-1} = g_0$ imply h = k,
- (ii) if $g \in N(G_0)$, then also $gg_0g^{-1} \in G_0$. Then $N(\mathfrak{M}(G_0)) = \mathfrak{M}(N(G_0))$.
- 4. Proofs of the theorems. Applying the four preceding lemmas to the groups and subgroups used to prove Theorems I and II of [1], our Theorem 1 follows. The proof of Theorem 2, which is very involved technically, is based on the proof of [6, Lemma 17].

REFERENCES

- 1. S. Anastasio, Maximal abelian subalgebras in hyperfinite factors, Amer. J. Math. 87 (1965), 955-971.
- 2. J. Dixmier, Sous-anneaux abéliens maximaux dans les facteurs de type fini, Ann. of Math. (2) 59 (1954), 279-286.
- 3. ——, Les algèbres d'opérateurs dans l'espace Hilbertion, Gauthier-Villars, Paris, 1957.
- 4. F. J. Murray and J. von Neumann, On rings of operators. IV, Ann. of Math. (2) 44 (1943), 716-808.
- 5. R. T. Powers, Representations of uniformly hyperfinite algebras and their associated von Neumann rings, Bull. Amer. Math. Soc. 73 (1967), 572-575.
- 6. L. Pukánszky, Some examples of factors, Publ. Math. Debrecen 4 (1956), 135-156.
- 7. Sister R. J. Tauer, Maximal abelian subalgebras in finite factors of type II, Trans. Amer. Math. Soc. 114 (1965), 281-308.

UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER 8, BRITISH COLUMBIA, CANADA