- 10. ——, On a definition of the integral in topological spaces. I, II, Časopis Pěst. Mat. 89 (1964), 129-147, 257-277.
- 11. ——, A note on the lower derivate of a set function and semihereditary systems of sets, Proc. Amer. Math. Soc. 18 (1967), 1020-1025.
- 12. —, On the lower derivate of a set function, Canad. J. Math. 20 (1968), 1489-1498.

 - 13. ——, The integral in topological spaces. I and II (to appear).
 14. ——, Singular integrals are Perron integrals of a certain type (to appear).
- 15. W. F. Pfeffer and W. J. Wilbur, A note on cluster points of a semihereditary stable system of sets, Proc. Amer. Math. Soc. 21 (1969).
 - 16. ——, On the measurability of Perron integrable functions (to appear).
- 17. W. J. Wilbur, On non-absolute integration in topological spaces, Ph.D. thesis, University of California, Davis, Calif.
 - 18. S. Saks, Theory of the integral, Hafner, New York, 1937.

University of California, Davis, California 95616

ON GENERALIZED COMPLETE METRIC SPACES

BY JAMES D. STEIN, JR.

Communicated by J. B. Diaz, October 3, 1968

The following remarks are of interest in connection with the research announcement [1]:

LEMMA. A generalized metric space is the disjoint union of metric spaces such that each metric space is infinitely distant from every other metric space.

PROOF. Note that $d(x, y) < \infty$ is an equivalence relation, and the equivalence classes obtained are metric spaces. Also, if the generalized space is complete, so is each metric space. Q.E.D.

Let $M = \bigvee_{\alpha \in A} M_{\alpha}$ denote the above partitioning. The Banach contraction principle becomes

PROPOSITION 1. Let T be a strict contraction of a generalized complete metric space $M = \bigvee_{\alpha \in A} M_{\alpha}, 0 \leq q < 1, d(x, y) < \infty \Rightarrow d(Tx, Ty) \leq qd(x, y).$ For each $\alpha \in A$, $\exists \beta \in A$ such that $T(M_{\alpha}) \subseteq M_{\beta}$. There is a unique periodic point of order n in each M_{α} such that $T^{n}(M_{\alpha}) \subseteq M_{\alpha}$.

PROOF. Let $x, y \in M_{\alpha}$, $Tx \in M_{\beta}$. Then $d(x, y) < \infty \Rightarrow d(Tx, Ty) < \infty$ $\Rightarrow Ty \in M_{\beta}$. Since T^n is a strict contraction of the complete metric space M_{α} , it has a unique fixed point, which is a periodic point of order n for T. O.E.D.

The local contraction principle becomes

PROPOSITION 2. Let T be a local contraction $(d(x, y) \leq C \Rightarrow d(Tx, Ty) \leq qd(x, y))$ of a complete generalized metric space. For each $\alpha \in A$, x, $y \in M_{\alpha}$, define $x \sim y$ iff $\exists x_0, \cdots, x_n \in M_0$ such that $x = x_0, y = x_n$, $d(x_i, x_{i+1}) \leq C$ for $0 \leq i \leq n-1$. Then \sim is an equivalence relation on each M_{α} ; call the equivalence classes thus obtained C-components. T maps each C-component of M_{α} into a C-component of some M_{β} . There is a unique periodic point of order n in each C-component N of M_{α} such that $T^n(N) \subseteq N$.

PROOF. Clearly $x \sim y$ is an equivalence relation; and if $x,y \in M_{\alpha}$ and $x \sim y$, let $x = x_0, \dots, x_n = y$ be the chain. Then $d(Tx_i, Tx_{i+1}) \le qd(x_i, x_{i+1}) \le C$, and so $Tx \sim Ty$ in some M_{β} . The remainder is Theorem 1.4 of Bonsall (or Edelstein) of On some fixed point theorems of functional analysis. Q.E.D.

Several of Edelstein's and Rakotch's results go over analogously.

REFERENCE

1. J. B. Diaz and Beatriz Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309.

University of California, Los Angeles, California 90024