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ON GENERALIZED COMPLETE METRIC SPACES
BY JAMES D. STEIN, JR.
Communicated by J. B. Diaz, October 3, 1968

The following remarks are of interest in connection with the re-
search announcement [1]:

LEMMA. A generalized metric space is the disjoint union of metric
spaces such that each metric space is infinitely distant from every other
melric space.

Proor. Note that d(x, ¥) < « is an equivalence relation, and the
equivalence classes obtained are metric spaces. Also, if the general-
ized space is complete, so is each metric space. Q.E.D.

Let M =Vau M, denote the above partitioning. The Banach
contraction principle becomes

PRrOPOSITION 1. Let T be a strict contraction of a generalized complete
metric space M =Vaca M., 05¢<1, d(x, y) < 0=d(Tx, Ty) <qd(x,y).
Foreacha €A, ABE A such that T (M) S M. There is a unique periodic
point of order n in each M, such that T*(M,)C M.,.

Proor. Let x, yEM,, Tx&E M. Then d(x, ) < o=d(Tx, Ty) < »
=Ty& Mpg. Since T™ is a strict contraction of the complete metric
space M,, it has a unique fixed point, which is a periodic point of
order n for . Q.E.D.

The local contraction principle becomes
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PRroPOSITION 2. Let T be a local contraction (d(x, v) < C=d(Tx, Ty)
=qd(x, y)) of a complete generalized metric space. For each a €A, x,
EM,, define x~y iff Axg, - - -, XaE M, such that x=x, y==xn,
d(xsy, xi41) SC for 021=n—1. Then ~ is an equivalence relation on
each M,; call the equivalence classes thus obtained C-components. T
maps each C-component of M, into a C-component of some Mg. There
s a unique periodic point of order n in each C-component N of M, such
that T*(N)CN.

Proor. Clearly x~y is an equivalence relation; and if x,y & M, and
x~7y, let x=x, -+, xo=v be the chain. Then d(Tx;, Txiu1)
=<qd(x;, xs41)<C, and so Tx~Ty in some M, The remainder is
Theorem 1.4 of Bonsall (or Edelstein) of On some fixed point theorems
of functional analysis. Q.E.D.

Several of Edelstein’s and Rakotch’s results go over analogously.
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