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1. Notation. L e t / : M2—»E4 be an immersion of a compact orient-
able surface. Let e^e^e* be orthonormal righthanded frames, e\e* 
tangent and agreeing with a fixed orientation of M. As usual define 
Ui and c»)ij by 

df= X œ*ei da = 22 wij-e,-, i = 1, • • • , 4. 

The connection forms in the tangent and normal bundles are respec­
tively W12 and o>34. The respective curvature forms are dœu and dcoz^. 
The Gauss curvature K and the normal curvature N satisfy (and may 
be defined by) 

do)12 = — Kooi A fc>2, do)z4 = — -Afcoi A W2. 

2. Statement of the main results. 

THEOREM 1. Suppose/: M—>EA is an immersion such that N is every-
where positive (negative). Then 

X(NM) = - 2X(M) (x(NM) = 2X(M)). 

Here x(NM) is the Euler characteristic of the normal bundle and x(M) 
is the Euler characteristic of M. 

COROLLARY 2. Every immersion of the sphere or torus must have a 
point where N = 0. 

The proof of Theorem 1 uses a geometrically defined field of tangent 
axes. In order to define these axes we review some of the local theory 
of surfaces in £ 4 . 

3. The curvature ellipse [ l ] . The local invariants of a surface in 
E4 are characterized by an ellipse in the normal plane. To define this 
ellipse let us first define a map rj: Sp—>NP, Sp is the unit tangent circle 
at p and Np is the normal plane at p. Let y(s) be a geodesic of M 
through p such that dy/ds(p) = ei, where e\ is a unit vector at p. De­
fine 77 by rj(ei) = d2y/ds2(p). The curvature ellipse is the image of Sp 

under rj. 
The mean curvature vector 3C is the position vector of the center of 

this ellipse. 
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4. Construction of a field of axes [ l ] . In general the line through 
the mean curvature vector meets the curvature ellipse in two dia­
metrical points. The inverse image under t\ of these two points are 
four unit tangent vectors which form a pair of orthogonal tangent 
lines, i.e. an axis. This construction fails only when 3C = 0 or at an 
inflection point. 

THEOREM 3. The singular locus {inflection points and points where 
3C = 0) of the field of axes constructed above is generically a set of isolated 
points. The index is generically ± J. 

5. Sketch of the proof of Theorem 1. If N> 0 then the point cannot 
be an inflection point. Thus the field of axes constructed above has 
singularities only at points where 3C = 0. These are generically iso­
lated. Let them be pi • • • pn. Let Indi(pi) be the index of this field 
of axes at pi. Generically Indi(pi) = ± J. On the other hand the mean 
curvature vector is a normal vector and hence gives a normal vector 
field with singularities at pu • • • , pn- Let Indz(pi) be the index of 5C 
at pi. Generically Ind2(p<) = ± 1 . The proof then consists in showing 
that if N>0 then Ind\(pi) and lnd2(p%) have opposite signs (and if 
N<0 Indiipi) and Ind2(£;) have the same signs). Once this is estab­
lished the proof follows readily from the fact that 

X(NM) = £ Incite) , x(M) = D Indito). 

6. Proof of Corollary 2. 

X(NM) = — f Nd A. 
2w J M 

Thus if N>0 (N<0) everywhere then x(NM)>0 {x(NM) <0) . By 
Theorem 1 if JV>0 (or N<0) everywhere then x(M)<0. Conse­
quently we obtain a contradiction if M is a torus or a sphere. 

In the light of Theorem 1 it would be interesting to know of ex­
amples of immersions with everywhere positive N. We have not 
found any yet. 
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