ON SINGULARITIES OF SURFACES IN E4

BY JOHN A. LITTLE

Communicated by Raoul Bott, July 29, 1968

1. Notation. Let $f: M^2 \rightarrow E^4$ be an immersion of a compact orientable surface. Let $e_1e_2e_3e_4$ be orthonormal righthanded frames, e_1e_2 tangent and agreeing with a fixed orientation of M. As usual define ω_i and ω_{ij} by

$$df = \sum \omega_i e_i$$
 $de_i = \sum \omega_{ij} e_j$, $i = 1, \dots, 4$.

The connection forms in the tangent and normal bundles are respectively ω_{12} and ω_{34} . The respective curvature forms are $d\omega_{12}$ and $d\omega_{34}$. The Gauss curvature K and the normal curvature N satisfy (and may be defined by)

$$d\omega_{12} = -K\omega_1 \wedge \omega_2, \qquad d\omega_{34} = -N\omega_1 \wedge \omega_2.$$

2. Statement of the main results.

THEOREM 1. Suppose $f: M \rightarrow E^4$ is an immersion such that N is everywhere positive (negative). Then

$$\chi(NM) = -2\chi(M) \qquad (\chi(NM) = 2\chi(M)).$$

Here $\chi(NM)$ is the Euler characteristic of the normal bundle and $\chi(M)$ is the Euler characteristic of M.

COROLLARY 2. Every immersion of the sphere or torus must have a point where N=0.

The proof of Theorem 1 uses a geometrically defined field of tangent axes. In order to define these axes we review some of the local theory of surfaces in E^4 .

3. The curvature ellipse [1]. The local invariants of a surface in E^4 are characterized by an ellipse in the normal plane. To define this ellipse let us first define a map $\eta: S_p \to N_p$, S_p is the unit tangent circle at p and N_p is the normal plane at p. Let $\gamma(s)$ be a geodesic of M through p such that $d\gamma/ds(p) = e_1$, where e_1 is a unit vector at p. Define η by $\eta(e_1) = d^2\gamma/ds^2(p)$. The curvature ellipse is the image of S_p under η .

The mean curvature vector \mathfrak{X} is the position vector of the center of this ellipse.

4. Construction of a field of axes [1]. In general the line through the mean curvature vector meets the curvature ellipse in two diametrical points. The inverse image under η of these two points are four unit tangent vectors which form a pair of orthogonal tangent lines, i.e. an axis. This construction fails only when $\Re = 0$ or at an inflection point.

THEOREM 3. The singular locus (inflection points and points where $\mathfrak{X}=0$) of the field of axes constructed above is generically a set of isolated points. The index is generically $\pm \frac{1}{2}$.

5. Sketch of the proof of Theorem 1. If N>0 then the point cannot be an inflection point. Thus the field of axes constructed above has singularities only at points where $\mathcal{K}=0$. These are generically isolated. Let them be $p_1 \cdot \cdot \cdot p_n$. Let $\mathrm{Ind}_1(p_i)$ be the index of this field of axes at p_i . Generically $\mathrm{Ind}_1(p_i) = \pm \frac{1}{2}$. On the other hand the mean curvature vector is a normal vector and hence gives a normal vector field with singularities at p_1, \dots, p_n . Let $\mathrm{Ind}_2(p_i)$ be the index of \mathcal{K} at p_i . Generically $\mathrm{Ind}_2(p_i) = \pm 1$. The proof then consists in showing that if N>0 then $\mathrm{Ind}_1(p_i)$ and $\mathrm{Ind}_2(p_i)$ have opposite signs (and if N<0 $\mathrm{Ind}_1(p_i)$ and $\mathrm{Ind}_2(p_i)$ have the same signs). Once this is established the proof follows readily from the fact that

$$\chi(NM) = \sum \operatorname{Ind}_2(p_i), \qquad \chi(M) = \sum \operatorname{Ind}_1(p_i).$$

6. Proof of Corollary 2.

$$\chi(NM) = \frac{1}{2\pi} \int_{M} NdA.$$

Thus if N>0 (N<0) everywhere then $\chi(NM)>0$ $(\chi(NM)<0)$. By Theorem 1 if N>0 (or N<0) everywhere then $\chi(M)<0$. Consequently we obtain a contradiction if M is a torus or a sphere.

In the light of Theorem 1 it would be interesting to know of examples of immersions with everywhere positive N. We have not found any yet.

REFERENCES

- 1. C. L. E. Moore and E. B. Wilson, Differential geometry of two-dimensional surfaces in hyperspace, Proc. Amer. Acad. Arts and Sci. 52 (1916), 267-368.
- 2. J. Little, On singularities of submanifolds of higher dimensional Euclidean spaces, Thesis, University of Minnesota, Minneapolis, Minn., 1968.

University of Minnesota, Minneapolis, Minnesota 55455