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In this note we present a maximum principle in integral form for 
optimal control problems with delay-differential system equations 
which also contain delays in the control. Recent related results for 
particular cases of the systems discussed below may be found in [ l ] , 
[5], and [ó]. Vector matrix notation will be used and we shall not 
distinguish between a vector and its transpose. 

Let ao and to be fixed in R1 with — 00 <ao<t0, 1= [«0, a) be a 
bounded interval containing [a0} to], and put I' = (t0, a). For x con­
tinuous on I and / in I', the notation F(x(-), t) will mean that F is a 
functional in x, depending on any or all of the values x{r), ao^r^L 
$ will denote the class of absolutely continuous n — 1 vector functions 
on [ceo, to]. Let Q be a given convex subset of the class of all bounded 
Borel measurable functions u defined on I into Rr, and 3 be a given C1 

manifold in R2n~l. The problem considered is that of minimizing 

rh 

J[$,u,x,h] = I f°(*('),u(-),t)dt 
J h 

over * X 12X C(I, Rn~l) XT subject to 

(i) hit) = ƒ(*(•), « ( - ) , 0 a.e. on [/<,, h], 

x{t) = $(t) on [a0, to], 

(ii) ( ^ o ) , x ( / ! ) , / i ) G 3 . 

We assume that ƒ = (f°, ƒ) = (f°, f1, • • • , fn~l) is an w-vector func­
tional of the form 

y*(*(0, « ( 0 , t) = *<(*(0, t) + f u(s)dsV(t, s)g*(*(s), t) 

(1) 
for i = 0, 1, • • • , n — 1, 

where the integral is a Lebesgue-Stieltjes integral. Each ft*(#(0» 0 is 
1 This research was supported in part by the Air Force Office of Scientific Research, 

under Grant No. AF-AFOSR 693-67, in part by the National Aeronautics and Space 
Administration, under Grant No. NGR 40-002-015 and in part by the National 
Science Foundation, under Grant No. GP 9024. 
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assumed C1 in x and measurable in t, and each g*(y, t) is C1 in (y, t) on 
Rn. The r X l vector function ?;(/, s) is measurable in /, s, and of 
bounded variation in 5 on [«o, / ] . I t is also assumed that the variation 
of rj is dominated by an Li(I') function m. That is, VJ»ao rj(t, s)^m(t) 
for / £ / ' . Finally, suppose that given X compact, XCi?*"1 , there 
exists an m in L\(/') such that h = (A0, A1, • • • , A71-1) satisfies | &(£*(• )>0| 
^m(t) and | i&[*(•). *; # ] | ^*(Ó| |? | j i for any $EC(I, Rn~x) and 
* £ C ( J , X), where ||$||* = sup{ |#(s) | : s £ [a0, *]} and d& is the 
Fréchet derivative of h with respect to x. (\A\ denotes the Euclidean 
norm of -4.) 
If ($*, u*, x*, t*) is a solution of the above problem, we define the 

nXn — 1 matrix function rj* for / £ / ' , s £ [a0, t] by 

(2) «*(/, J) = ï?(t, s) + fa*(/, 5). 

where ijf is such that 

J «0 

for * £ / ' and all f £ C ( [ a 0 , / ] , i?»"1), and 

$,*(/, j) s - ƒ u*(p)dtfli(t, /J)&(«*C8), /) J < /, 

(The existence of 7?* is guaranteed by the Riesz Theorem.) Then we 
have the following necessary conditions. 

THEOREM. Let ($*, u*f x*, t*) be a solution to the problem under the 
assumptions above. In addition, suppose that /* is a Lebesgue point of 
ƒ(#*(•)> #*(•)> 0- Then there exists a nontrivial n-vector function 
\(t) = (\°(t), X(/)) of bounded variation on [/0, t*], continuous at t*, 
satisfying 

(a) X°(/) = constants, X(tf) F*0, 

X(0 + ƒ \(0)i*(fi, m = *(tf) /or / G [<o, '1*) 

wfore ij* is defined by (2). 

(b) * * 

f ftx(0/(«*(-), «*(•), 0 * è f ,lx(0/(«*(-), «(•), t)dt 

forallu^ü. 
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(c) The 2w —1 vector 

(-X(4> +ƒ**<»{**<& «•> - 5*0?, <*)}#, X(tf), -X(tf) .ƒ•(«) 

Î5 orthogonal to 3 a/ (**(/<>), **(#), tf), where f*(%) s ƒ (#*(•), ***(•)»£)• 

The proof of this theorem involves showing that the class of func­
tions ff= {^(s(-), 0: ^(*(0. 0 =ƒ(*('). »(•)» 0t «GO} is absolutely 
quasiconvex [2] and then using necessary conditions for extremals 
given in [2]. Absolute quasiconvexity is a generalization of ideas due 
to Gamkrelidze [4], who first obtained an integral maximum principle 
for control problems with ordinary differential system equations. The 
inequality in (b) is a maximum principle in integral form for the 
above described optimal control problem. 

In many particular cases of the systems defined by (1), one can 
show that the multipliers % are actually absolutely continuous and 
satisfy (a) in differentiated form. This differentiated form becomes 
the usual known multiplier equation for systems with simple time 
lags in the state variables (see [l]). The transversality conditions 
given in (c) also can be reduced to a simpler form for many special 
cases of (1). 

Included in (1) are many integro-differential systems and time lag 
systems which appear in physical problems. For example, if one 
modifies slightly the biological population model formulated by 
Cooke in [3], one obtains the system equation 

x(t) = u{t - r)x(t - T) + P(t)u(t - r - 6(t))x(t - r - 0(f)) 

where x(t) is the number in the population at time t, u(t) is the con­
ception rate at time /, and r is the gestation period. Systems with 

*(*(•), 0 - (' A(t,s)q(x(s),t)ds, 

which arise in the study of reactor dynamics [7], and with h($('), t) 
= G(xu t), where x% = #(J+0), 0 £ [—T, 0], are also special cases of (1). 
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