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In this note we present a maximum principle in integral form for
optimal control problems with delay-differential system equations
which also contain delays in the control. Recent related results for
particular cases of the systems discussed below may be found in [1],
[5], and [6]. Vector matrix notation will be used and we shall not
distinguish between a vector and its transpose.

Let a and ¢, be fixed in R! with — o <ao<ty, I=[a,, a) be a
bounded interval containing [ao, #], and put I’ = (t,, a). For x con-
tinuous on I and ¢ in I’, the notation F(x(-), ¢) will mean that Fisa
functional in %, depending on any or all of the values x(7), ap =<7 =t.
& will denote the class of absolutely continuous # —1 vector functions
on [ao, %]. Let Q be a given convex subset of the class of all bounded
Borel measurable functions # defined on I into R", and J be a given C!
manifold in R?*~!, The problem considered is that of minimizing

718,86 = [ G, (), D

over ®X QX C(I, R*1) X I subject to
(i) k(t) = f(.’f:('), u(')y t) a.c. on [tO) t1]$
@(t) = 5(!) on [ao, to],
() (@), (), 1) € 3.

We assume that f=(f°, f) =% fY - - -, f~!) is an n-vector func-
tional of the form

F0), 09,0 = B, 0+ [ it 960, )
(1) °

fori=0,1,---,n—1,
where the integral is a Lebesgue-Stieltjes integral. Each h#(z(-), ¢) is
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assumed C! in % and measurable in ¢, and each gi(4, t) is C'in (4, {) on
R», The X1 vector function 5(¢, s) is measurable in ¢, s, and of
bounded variation in s on [a, ¢]. It is also assumed that the variation
of n is dominated by an L,(I’) function m. That is, Vi_ 4, 1(¢, s) Sm(t)
for t€I'. Finally, suppose that given X compact, X CR"!, there
existsan min Ly(I’) such that b= (B, B!, - - - , h*~1) satisfies [ h(z(-), t)|
<m(t) and |dh[z(-), t; ¥]| S @)||§|| for any §ECUI, R**) and
£€C(I, X), where ||J]l:=sup{|F()|:s€ [a0 t]} and dh is the
Fréchet derivative of & with respect to £ (| 4| denotes the Euclidean
norm of 4.)

Tf ($*, u*, z*, £f) is a solution of the above problem, we define the
nXn—1 matrix function 7* for tEI’, s€ [ay, t] by

(2) ﬁ*(ty S) = ﬁl*(tx S) + 7-72*(t7 S)-

where #} is such that
t
ahle*(), 9] = [ a9
ag
for t&I’ and all $&C ([, t], R*1), and

i#6,9 = = [ #@in, D@0 s <t
=0 ° st

(The existence of 7] is guaranteed by the Riesz Theorem.) Then we
have the following necessary conditions.

THEOREM. Let ($*, u*, &*, t7) be a solution to the problem under the
assumptions above. In addition, suppose that tf is a Lebesgue point of
f(&*(-), u*(), t). Then there exists a nonirivial n-vector function
() = (\(t), X(t)) of bounded variation on [t i), continuous at t},
satisfying

(a) NO(¢) = constant <0, \(tT) =0,

A + f NOTB, DdB = K1) for t € [to, 1)

¢

where 7* is defined by (2).

® u
[ o, e, paz [ Non@ o), w0, da

0

for allu&Q.
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(c) The 2n—1 vector

(—X(to) + [ @ a6, a0 - 6, ), 16, -2 -f'(ti"))

7
is orthogonal to 3 at (£* (o), £*(8}), 11), where f* (1Y) =f(2*(-), u*(-), ).

The proof of this theorem involves showing that the class of func-
tions §= {F(£(~), t): F(2(-), t) =f(&(-), u(-), t), uEQ} is absolutely
quasiconvex [2] and then using necessary conditions for extremals
given in [2]. Absolute quasiconvexity is a generalization of ideas due
to Gamkrelidze [4], who first obtained an integral maximum principle
for control problems with ordinary differential system equations. The
inequality in (b) is a maximum principle in integral form for the
above described optimal control problem.

In many particular cases of the systems defined by (1), one can
show that the multipliers X are actually absolutely continuous and
satisfy (a) in differentiated form. This differentiated form becomes
the usual known multiplier equation for systems with simple time
lags in the state variables (see [1]). The transversality conditions
given in (c) also can be reduced to a simpler form for many special
cases of (1).

Included in (1) are many integro-differential systems and time lag
systems which appear in physical problems. For example, if one
modifies slightly the biological population model formulated by
Cooke in [3], one obtains the system equation

#(t) = u(t — D)t — 1) + Bt —  — 0()x(t — 7 — 0(5))

where x(¢) is the number in the population at time ¢, % () is the con-
ception rate at time ¢, and 7 is the gestation period. Systems with

W), = [ 46, 996, 0as,

which arise in the study of reactor dynamics [7], and with k(2(-), ¢)
=G(&, t), where %, = &(t+0), 0& [— T, 0], are also special cases of (1).
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