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Let {<f>n}, « = 0, 1, 2, • • - , be a system of functions on (0, 1) with 
0 o = l . For n = 2kl+2k*+ • • • +2*«, with 0^h<k2< • • • <k„ we 
set 

If {^n} is an orthogonal system on (0, 1), it is called a W-system 
[l, pp. 185-196] after the Walsh system, {wn}, which is formed from 
the Rademacher functions, {rn}, in this manner. I t is generally as­
sumed that the system {^n} is equinormed, i.e., there is a constant 
K such that 

(*) f | * » | 2 = K for n^ n0. 
J o 

The study of these systems has shown that they are essentially 
of two types depending on whether or not we assume 

(**) | <t>n(%) | ^ 1 a.e. for every n. 

When this assumption is made, the results obtained on TF-systems 
parallel those for the Walsh system. In the other case, the behavior 
may resemble that of systems generated by the strongly lacunary 
trigonometric sequences {21/2 cos mnx} and {21/2 sin mnx\ with 
mn+1/mn^3 ( [ l , pp. 190-191] and [2, pp. 208-209]). 

We will restrict our consideration to the systems satisfying (*) and 
(**) and we will refer to them simply as T^-systems. 

In very general terms our results may be stated as follows. 
A result concerning the a.e. convergence or summdbility of a Walsh 

series, ^cnwn, implies the corresponding result for the W-series, ^Cnfin-
We will state more precise results shortly. 
From our first lemma we conclude that we may assume | </>n(x) | = 1 

a.e. without loss of generality. 

LEMMA 1. To any system {</>n} on (0, 1) with 

ƒ U. ' l 2= ƒ |*<fc|2 = * fori^j 
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and 

I <l>n(%) I ^ 1 0.e. for all n, 

there corresponds a measurable set EC(0 , 1), m(E) =K, such that, for 
every n, |</>n| = 1 on E and |<£»| = 0 a.e. on Ee. 

It is not difficult to see that this implies that the system {^„} 
lives on a set E of measure K in the sense that 

(0 | ^n| = 1 on E for every «, 
(ii) w ( { ^ „ ^ 0 } n £ c ) > 0 for only finitely many w, 
(iii) {\f/n) is orthogonal relative to E. 
Alexits has called a system {</>n} multiplicatively orthogonal if 

/^n = 0 for w>0 and strongly multiplicatively orthogonal if {\[/n} is 
orthogonal [l, pp. 186-187]. We note that under the hypotheses of 
Lemma 1, these notions coincide relative to E. 

If A is a 1-1 measure preserving map of (0, 1) onto itself taking 
(0, K) into E, we see that {\f/n o A(Kx)} is a W-system on (0, 1) and 
| \f/n o A (Kx) | = 1 a.e. for all n. Thus we can reduce the study of the 
original system on E to the study of a W-system living on (0, 1). 

We will assume, henceforth, that | <£»(#) | = 1 a.e. for all n. 
Let us consider the sets on which 0i, • • • , 0* are of constant sign. 

For any integer / £ [0, 2* — l ] , we have a unique representation 

t = 0*2° + • • • + ax2
k~l 

with a, = 0or 1. Set 

El « {x: <t>v(x) = e*"*, v = 1, • • • , k}. 

Then (0, 1) = Urlô1 -E*, modulo a null set, and the sets E't are pairwise 
disjoint and measurable. We have, indeed, 

LEMMA 2. m(E't) = l/2k for all k and * = 0, 1, • • • , 2 * - l . 

We now define a function on (0, 1) by means of the dyadic repre­
sentation of its values, y(x) = .OLICLI • • • , with 

av = (1/»T) log 0„(a), v = 1, 2, 3, • • • . 

We see at once that, except for those points for which «„= 1 o r a . s O 
from some index onward, y(x) = ,a\a%a% • • • , a„ = 0 or 1, if and only 
if xCzE*k1 t = 2k(.ai • • • a*) for every &. This exceptional set, as well 
as the set for which a„5^0 or 1 for some v, is easily seen to be a set of 
measure zero. 

We have the following result. 
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LEMMA 3. For every measurable EQ(0, 1), y~x(E) is measurable and 
m{y~l(E))=m{E). 

A sequence {/n} of bounded measurable functions is said to be 
maximal if there is a set Z of measure zero such that if fn(xi) =/n(#2) 
for every n and xi, x2^pZf then X\ = x2. Rényi [3] showed that maxi­
m a l l y is sufficient to imply that the system 

1/1 72 * • • • 'Jn } , 

w t = 0 , 1, 2, • • • , w = l, 2, 3, • • • , is closed in L2. We [4] have shown 
that maximality is also necessary. 

Clearly the sequence {<f>n} is maximal if and only if y is almost 
everywhere 1-1. We have further 

LEMMA 4. If {</>n} is maximal, there is a metric automorphism rj on 
(0, 1) such that rj(x) =y(x) a.e. 

By a metric automorphism of a set we mean a 1-1 measure preserv­
ing mapping of the set onto itself. 

Applying these results to W-systems we have 

THEOREM 1. If {yf/n} is a W'-system, then the following conditions are 
equivalent: 

(i) {ypn} is complete. 
(ii) There is a metric automorphism rj of (0, 1) such that \l/n(x) 

= w» o rj(x) a.e. for every n. 

We see then that for complete PF-systems the study of the series 
ITxnil/n can be replaced by the study of the Walsh series ^cnwn. We 
note further that for every / £ L P , p è 1, f~ ^cn\l/ni we have g =ƒ o rç-1 

£Z> and g~ ^2cnwn. Thus most results of an almost everywhere na­
ture concerning the Walsh-Fourier series of functions in Lp are ex­
tendable to W-Fourier series. 

This is still the case for some types of results even if {i^n} is not 
complete, for in this case, if g £ L p , p^l, g~^2cnwni then h — goy 
£Z> and ft~£X^n. 

Since Stein [5] has shown that there is an L1 function whose 
Walsh-Fourier series diverges a.e., we have 

THEOREM 2. For any W-system there is an integrable function whose 
W-Fourier series diverges a.e. 

If / £ L 2 , f^^c^n, then there is an / * £ L 2 , /*~]£c»«/ n . Since 
Billard [ô] has solved Lusin's problem for Walsh-Fourier series we 
have 
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THEOREM 3. The W-Fourier series of an L2 function converges ax. 

Our final result concerns a peculiar type of invariance under re­
arrangement. We state the results for Walsh series. We do not be­
lieve that this has been noted previously. 

Suppose {rni}, i = 1, 2, • • • , is a rearrangement of the Rademacher 
system. This induces a rearrangement of the Walsh system by means 
of the relation 

wm. = rn. 'rn.%- . . . -rnik 

where 

m. = 2
n<1 + • - • + 2ni\ 

Such rearrangements we call coherent. We have the following result. 

THEOREM 4. If {Wm»} is a coherent rearrangement of the Walsh sys­
tem, then the almost everywhere convergence and summability behaviors 
of the series ^2cnwn and ^CnW^ are the same. 
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