A GENERALIZATION OF THE AHLFORS-HEINS THEOREM¹

BY MATTS ESSÉN

Communicated by W. H. Fuchs, August 29, 1968

Let D be the complex plane cut along the negative real axis. We are going to consider a function u subharmonic in D. Let $M(r) = \sup_{|z|=r} u(z)$ and $m(r) = \inf_{|z|=r} u(z)$. We also introduce, for r>0, $v(r) = \limsup_{z\to -r+i0} u(z)$, $\bar{v}(r) = \limsup_{z\to -r-i0} u(z)$ and $u(-r) = \max(v(r), \bar{v}(r))$. In the whole paper, $z=re^{i\theta}$. Our main result is

THEOREM 1. Let λ be a number in the interval (0, 1) and let $u \ (\not\equiv -\infty)$ be a function subharmonic in D that satisfies

(1)
$$u(-r) - \cos \pi \lambda \ u(r) \leq 0.$$

Then either $\lim_{r\to\infty} r^{-\lambda}M(r) = \infty$ or

(A) there exists a number α such that

(2)
$$\lim_{r\to\infty} r^{-\lambda}u(re^{i\theta}) = \alpha \cos \lambda\theta, \qquad |\theta| < \pi,$$

except when θ belongs to a set of logarithmic capacity zero.

(B) Given θ_0 , $0 < \theta_0 < \pi$, there exists an r-set Δ_0 of finite logarithmic length such that (2) holds uniformly in $\{z \mid |\theta| \leq \theta_0\}$ when r is restricted to lie outside of Δ_0 .

REMARK. When $1/2 < \lambda < 1$, condition (1) is interpreted in the following way at points where $u(-r) = \infty$.

(1a)
$$\limsup_{x\to r} (u(x+iy) + u(-x+iy)) \le (1+\cos\pi\lambda)u(r),$$

(1b)
$$\lim \sup_{x \to r} (u(-x+iy) - \cos \pi \lambda \ u(x+iy)) \le 0.$$

Theorem 1 can be compared to the main result of Kjellberg [6].

THEOREM 2. Let u be subharmonic in the complex plane and let λ be a number in the interval (0, 1). If $m(r) - \cos \pi \lambda$ $M(r) \leq 0$, then the (possibly infinite) limit $\lim_{r\to\infty} r^{-\lambda}M(r)$ exists.

In order to clarify the connection between Theorem 1 and the Ahlfors-Heins theorem [1], we also state Theorem 1 in the following equivalent way.

¹ Research supported in part by the National Science Foundation.

THEOREM 3. Let λ be a number in the interval (0, 1) and let u be a function subharmonic in $\{\text{Re } z>0\}$. If for t real

(3)
$$u(it) \equiv \limsup_{z \to it} u(z) \leq \cos \pi \lambda \ u(\mid t \mid),$$

then either $\limsup_{r\to\infty} r^{-2\lambda} M(r) = \infty$ or $\lim_{z\to\infty} u(z)/(r^{2\lambda}\cos 2\lambda\theta)$ exists in the sense of (A) and (B).

If we choose $\lambda = 1/2$, we obtain the Ahlfors-Heins theorem.

The proof of Theorem 1 is long and will appear elsewhere. In this announcement, we give an outline of the proof of Theorem 3 in the simpler case $0 < \lambda < 1/2$. In the proof, two lemmas (Lemmas 3 and 4) on convolution inequalities are used. These are stated at the end of the paper.

PROOF OF THEOREM 3 IN THE CASE $0 < \lambda < 1/2$. It is an unessential restriction to assume that u is harmonic, bounded and has a negative upper bound in a neighborhood of the origin.

LEMMA 1. Under the assumptions of Theorem 3, either $\lim_{r\to\infty} r^{-2\lambda}M(r) = \infty$ or $\limsup_{r\to\infty} r^{-2\lambda}u(r) < \infty$.

PROOF OF LEMMA 1. We apply Poisson's formula for a semicircle (cf., e.g., Boas [2, 1.2.3]). Using (3), we deduce

$$r^{-2\lambda}u^+(r) \leq \int_0^R t^{-2\lambda}u^+(t)L(r,t)dt + \operatorname{const.}(r/R)^{1-2\lambda}(M(R)/R^{2\lambda}),$$

where

$$L(r, t) = \frac{2 \cos \pi \lambda}{\pi} \cdot \frac{(t/r)^{2\lambda} \cdot r}{t^2 + r^2}$$

and

$$u^+ = \max(u, 0).$$

Since $\int_0^\infty L(r,t)dt = 1$, we obtain $\sup_{0 < r < R} r^{-2\lambda}u^+(r) \le \text{const.} R^{-2\lambda}M(R)$ from which Lemma 1 follows.

In the remaining part of the paper, we assume that the second alternative of Lemma 1 is valid. In particular, we have

$$\liminf_{r\to\infty}r^{-2\lambda}M(r)<\infty.$$

Letting $R \rightarrow \infty$ in the formulas used in the proof of Lemma 1, we deduce

(4)
$$r^{-2\lambda}u(r) \leq \int_0^\infty L(r,t)t^{-2\lambda}u(t)dt.$$

We define $\alpha = \lim \sup_{r \to \infty} r^{-2\lambda} u(r)$ and $u_1(z) = u(z) - \alpha r^{2\lambda} \cos 2\lambda \theta$.

LEMMA 2. α is finite and u_1 is a nonpositive function on the positive real axis.

PROOF. By the change of variables $r=e^x$, $t=e^y$ in (4), we obtain a convolution inequality

$$\phi - \phi * L \leq 0$$

where

$$L(x) = \frac{2\cos\pi\lambda}{\pi} \frac{e^{(1-2\lambda)x}}{e^{2x}+1}$$

and $\phi(x) = e^{-2\lambda x}u(e^2)$. If α is finite, the lemma follows by applying Lemma 3 to $(\phi - \alpha)^+$. The case $\alpha = -\infty$ is treated in a similar way.

From now on, we can assume that $\limsup_{t\to\infty} r^{-2\lambda}u(t) = 0$ and that u is nonpositive on the positive real axis (if this is not true, replace u by u_1). It follows from (3) that the function $t \sim u(it)$, $t \in \mathbb{R}$, is also nonpositive. We define

$$w(z) = \frac{r\cos\theta}{\pi} \int_{-\infty}^{\infty} \frac{u(it)}{r^2 - 2tr\sin\theta + t^2} dt,$$

the integral being absolutely convergent. Applying the Phragmén-Lindelöf theorem (cf., e.g., Heins [5, p. 111]), we conclude that w is a harmonic majorant of u in $\{\text{Re } z > 0\}$. The nonnegative, super-harmonic function q is defined by q = w - u. Once more applying (3), we obtain

$$w(r) \leq \frac{2r \cos \pi \lambda}{\pi} \int_{0}^{\infty} \frac{u(t)}{t^2 + r^2} dt = \frac{2r \cos \pi \lambda}{\pi} \int_{0}^{\infty} \frac{w(t) - q(t)}{t^2 + r^2} dt.$$

Since q is nonnegative, the same change of variables as in the proof of Lemma 2 gives that the function ψ defined by $\psi(x) = e^{-2\lambda x}w(e^x)$, $x \in \mathbb{R}$, is a solution of a convolution inequality. Applying Lemma 4, we obtain that $\lim_{z \to \infty} \psi(x) = \lim_{r \to \infty} r^{-2\lambda}w(r) = 0$ and that $\int_0^\infty t^{-1-2\lambda}q(t)dt$ is convergent. It is now easy to prove that $\lim_{z \to \infty} w(z)/(r^{2\lambda}\cos 2\lambda\theta) = 0$ uniformly in each inner sector of $\{\text{Re } z > 0\}$. It remains for us to consider q.

We claim that $\lim_{z\to\infty} q(z)/(r^{2\lambda}\cos 2\lambda\theta) = 0$ in the sense of (A) and (B). It is an unessential restriction to assume that $\lim_{z\to it} q(z) = 0$,

 $t \in \mathbb{R}$ (if this is not true, replace -q by $\max(-q, -x)$). Let the subharmonic function h_1 be -q in the fourth quadrant and the least harmonic majorant of -q in the first quadrant. Using repeated harmonic continuations and conformal mappings, we construct a function subharmonic in a half-plane which fulfills the assumptions of the Ahlfors-Heins theorem. The essential properties of the exceptional sets are not changed by conformal mappings, and going back to h_1 , we obtain our result in the fourth quadrant. Interchanging the role of the quadrants in the previous construction, we obtain the existence of the limit in $\{\text{Re } z > 0\}$, and the proof of Theorem 3 in the case $0 < \lambda < 1/2$ is complete.

An alternative way of stating Theorem 3 is to use the concept of fine topology (cf. Doob [3] for references). It is worth mentioning that in the case $0 < \lambda < 1/2$, our assumptions imply that u(z) has a finite fine limit almost everywhere on the imaginary axis. This property of u follows immediately from Theorem 4.3 of Doob [3], applied to the nonpositive subharmonic function u and the positive harmonic function $z \sim r^{2\lambda}\cos 2\lambda\theta$, Re z > 0.

Finally, we state the lemmas on convolution inequalities. They are variations on the result of Essén [4]. For simplicity, we only consider the kernel L mentioned in the proof of Lemma 2, and study the convolution inequality

$$\phi - \phi * L \le 0.$$

A solution of (5) is a locally integrable function ϕ such that $\phi*L$ converges absolutely and (5) is true.

LEMMA 3. Let ϕ be a bounded solution of (5). If $\lim_{|x|\to\infty}\phi(x)=0$, then $\phi(x)=0$ a.e.

We define

$$\phi_c(x) = \phi(x), \quad \phi(x) \ge -c,$$

= $-c, \quad \phi(x) < -c.$

LEMMA 4. Let ϕ be a nonpositive solution of (5). If $\limsup_{x\to\infty} \phi(x) = 0$, then $\phi - \phi * L \subset L^1(0, \infty)$. If furthermore there exists a positive constant c such that ϕ_c is slowly decreasing at infinity (cf. [7, Chapter IV (9b)]), then $\lim_{x\to\infty} \phi(x) = 0$.

BIBLIOGRAPHY

- 1. L. Ahlfors and M. Heins, Questions of regularity connected with the Phragmén-Lindelöf principle, Ann. of Math. (2) 50 (1949), 341-346.
 - 2. R. P. Boas, Entire functions, Academic Press, New York, 1954.

- 3. J. L. Doob, A non-probabilistic proof of the relative Fatou theorem, Ann. Inst. Fourier (Grenoble) 9 (1959), 293-300.
- 4. M. Essén, Note on "A theorem on the minimum modulus of entire functions" by Kjellberg, Math. Scand. 12 (1963), 12-14.
- 5. M. Heins, Selected topics in the classical theory of functions of a complex variable, Holt, New York, 1962.
- 6. B. Kjellberg, A theorem on the minimum modulus of entire functions, Math. Scand. 12 (1963), 5-11.
- 7. D. V. Widder, The Laplace transform, Princeton Univ. Press, Princeton, N. J., 1946.

ROYAL INSTITUTE OF TECHNOLOGY, STOCKHOLM 70, SWEDEN AND UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801