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Let D be the complex plane cut along the negative real axis. We 
are going to consider a function u subharmonic in D. Let M(r) 
= supi*|=r u(z) and m(r)=mi\z\^ru(z). We also introduce, for 
r > 0 , v(r) =l im supz__r+to u(z), v(r) =l im sup^_r-*o u(z) and u(—r) 
= max(z;(r), v(r)). In the whole paper, z = reie. Our main result is 

THEOREM 1. Let \bea number in the interval (0, 1) and letu ( f̂  — <*> ) 
be a junction subharmonic in D that satisfies 

(1) u{—r) — cos 7rX u(r) ^ 0. 

Then either limr_*oo r~~*M(r) = oo or 
(A) there exists a number a such that 

(2) lim r-^uire*) = a cos X0, M < *", 

except when 0 belongs to a set of logarithmic capacity zero. 
(B) Given 0O, O<0o<?r» 2/^re #m/s an r-set A0 of finite logarithmic 

length such that (2) fto&fc uniformly in {z\ \d\ ^0O} when r is restricted 
to lie outside of A0. 

REMARK. When 1 / 2 < X < 1 , condition (1) is interpreted in the 
following way at points where u ( — r) = oo. 

(la) lim sup(u(x + iy) + u(—x + iy)) ^ (1 + cos wX)u(r), 

(lb) lim sup(w(—x + iy) — COSTTX u(x + iy)) ^ 0. 
Z—*T 

Theorem 1 can be compared to the main result of Kjellberg [6]. 

THEOREM 2. Let u be subharmonic in the complex plane and let X be 
a number in the interval (0, 1). If m(r)—cos 7rX M(r)^0, then the 
(possibly infinite) limit lim,.^ r~x ikf(r) exists. 

In order to clarify the connection between Theorem 1 and the 
Ahlfors-Heins theorem [ l ] , we also state Theorem 1 in the following 
equivalent way. 
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THEOREM 3. Let X be a number in the interval (0, 1) and let u be a 
function subharmonic in {Re z > 0 } . If for t real 

(3) u{it) = lim sup u(z) ^ cos w\ u( \ t\ ), 
z—*it 

then either lim sup^» r~2XAf(r) = <x> or lim^œ u(z)/(rncos 2X0) exists in 
the sense of (A) and (B). 

If we choose X = 1/2, we obtain the Ahlfors-Heins theorem. 
The proof of Theorem 1 is long and will appear elsewhere. In this 

announcement, we give an outline of the proof of Theorem 3 in the 
simpler case 0 < X < l / 2 . In the proof, two lemmas (Lemmas 3 and 4) 
on convolution inequalities are used. These are stated at the end of 
the paper. 

PROOF OF THEOREM 3 IN THE CASE 0 < X < l / 2 . It is an unessential 
restriction to assume that u is harmonic, bounded and has a negative 
upper bound in a neighborhood of the origin. 

LEMMA 1. Under the assumptions of Theorem 3, either lim,.-» r~2XM(r) 
= oo or lim sup^œ r~2Xtt(r) < <x>. 

PROOF OF LEMMA 1. We apply Poisson's formula for a semicircle 
(cf., e.g., Boas [2, 1.2.3]). Using (3), we deduce 

ƒ> R 

tr*u+(t)L(r, t)dt + const.(r/R)l-2\M(R)/R2*), 
o 

where 

2COSTTX (//r)2X-r 
L(r, t) — 

T t* + r* 
and 

w+ =* max(w, 0). 

Since fô L(r, t)dt = 1, we obtain sup0<r<i2 r~2Xw+(r) g const. R~2XM(R) 
from which Lemma 1 follows. 

In the remaining part of the paper, we assume that the second 
alternative of Lemma 1 is valid. In particular, we have 

liminfr""2XAf(r) < GO. 
r-+oo 

Letting R—>» in the formulas used in the proof of Lemma I, we 
deduce 
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ƒ» go 

Z(r, t)r*u(t)dt. 
o 

We define a = lim supr-oo r~"2Xw(r) and U\(z) = u(z)—arnco$ 2X0. 

LEMMA 2. a is finite and u\ is a nonpositive function on the positive 
real axis. 

PROOF. By the change of variables r=ex, t—ev in (4), we obtain a 
convolution inequality 

<t> - <t> * L ^ 0 , 

where 

2 cos T\ e<l-2»x 

£(*)« 
+ 1 

and 4>(x) -er^uie9). If a is finite, the lemma follows by applying 
Lemma 3 to» (#—a)+. The case a « — oo is treated in a similar way. 

From now on, we can assume that lim sup^» r~*u(jr) « 0 and that 
u is nonpositive on the positive real axis (if this is not true, replace 
u by tfi). It follows from (3) that the function U**u(it), t&R, is also, 
nonpositive. We define 

r cos 6 r °° u(it) 
wrz\ a- I fa 

T J-„ r2-2*rsin0 + *2 

the integral being absolutely convergent. Applying the Phragmén-
Lindelöf theorem (cf., e.g., Heins [S, p. I l l ] ) , we conclude that w is 
a harmonic majorant of u in {Re 2>0) . The nonnegative, super-
harmonic function q is defined by g = w —u. Once more applying (3), 
we obtain 

Ir cos T\ f °° w(0 2r cos *rX /• * w(t) - ç(0 

T Jo /2 + r2 ir Jo *2 + r* 

Since g is nonnegative, the same change of variables as in the proof 
of Lemma 2 gives that the function ^ defined by \(/{x) =e-2*xw(ex), 
xÇzR, is a solution of a convolution inequality. Applying Lemma 4, 
we obtain that lim,.,* \//(x) = lim^^, r~2*w(r) = 0 and that fô t~l^\{t)dt 
is convergent. It is now easy to prove that lim^» w(s)/(r2Xcos 2X0) 
= 0 uniformly in each inner sector of {Re z>0}. It remains for us to 
consider q. 

We claim that Hm,-*, q(z)/(r2Xcos 2X0) =0 in the sense of (A) and 
(B). It is an unessential restriction to assume that lim,-,* q(z) = 0, 



130 MATTS ESSEN [January 

tÇzR (if this is not true, replace — q by max( —q, —x)). Let the sub-
harmonic function fti be — q in the fourth quadrant and the least 
harmonic majorant of — q in the first quadrant. Using repeated har­
monic continuations and conformai mappings, we construct a func­
tion subharmonic in a half-plane which fulfills the assumptions of the 
Ahlfors-Heins theorem. The essential properties of the exceptional 
sets are not changed by conformai mappings, and going back to hi, 
we obtain our result in the fourth quadrant. Interchanging the role 
of the quadrants in the previous construction, we obtain the existence 
of the limit in {Re z > 0 } , and the proof of Theorem 3 in the case 
0 <X < 1/2 is complete. 

An alternative way of stating Theorem 3 is to use the concept of 
fine topology (cf. Doob [3] for references). I t is worth mentioning 
that in the case 0 < X < l / 2 , our assumptions imply that u(z) has a 
finite fine limit almost everywhere on the imaginary axis. This prop­
erty of u follows immediately from Theorem 4.3 of Doob [3], applied 
to the nonpositive subharmonic function u and the positive harmonic 
function z^r^cos 2X0, Re z>0. 

Finally, we state the lemmas on convolution inequalities. They 
are variations on the result of Essén [4]. For simplicity, we only 
consider the kernel L mentioned in the proof of Lemma 2, and study 
the convolution inequality 

(5) 4> - 4>*L ^ 0 . 

A solution of (5) is a locally integrable function </> such that <p*L 
converges absolutely and (5) is true. 

LEMMA 3. Let <j> be a bounded solution of (5). If lim|a>i-*ao0(ff) =0 , 
then<t>{x) =0a.e. 

We define 

<t>c(x) = *(*), <t>(x) è - C, 

= — c, <t>(x) < — c. 

LEMMA 4. Let <f> be a nonpositive solution of (5). If lim s u p ^ * <j>{x) 
= 0, then <t>—<t>*LCE:Ll(0y <*>). If furthermore there exists a positive con­
stant c such that <f>e is slowly decreasing at infinity {cf. [7, Chapter 
IV (9b)]), then l im*^ 0(x) = 0 . 
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