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1. Introduction. This is the first of three announcements of results 
concerning operator theory on locally convex topological vector 
spaces [3], [4]. The method described here uses certain well-behaved 
"finite" operators on such a space to study the properties of general 
operators acting there. Under suitable completeness conditions, these 
well-behaved operators appear in certain geometrically-determined 
Banach algebras; this fact brings to bear the highly developed classi­
cal theory of Banach algebras in the study of general operators on 
general locally convex spaces. Some of the methods are formally 
identical to those introduced by Allan in his earlier spectral theory 
for locally convex algebras [ l ] . 

Two principal applications have motivated the early research re­
ported here and other work now in progress. I t would be useful to 
have an operator theory on locally convex spaces of test functions 
and distributions powerful enough to treat problems in partial differ­
ential and "integro-differential" equations systematically within the 
framework of functional analysis. The infinite-dimensional repre­
sentation theory of Lie groups presents a related set of problems, 
when treated from a systematically "infinitesimal" point of view, on 
special locally convex spaces of "C00 vectors." The simplest sorts of 
applications of this type are illustrated in [4]. 

Full proofs of these and related results will appear in [S]. 

2. Calibrations and normed algebras. The notions and results dis­
cussed in this section depend upon the choice of a fixed "geometrical" 
structure on a Hausdorff locally convex topological vector space 
(les) H over the ground field F— {R or C} : a calibration T for X is a 
collection of continuous seminorms p on H which induces the topology 
of 36. Then the collection of all 

N(e,p) = {uex|p(u) £<•} € > 0 , ^ e r 
forms a neighborhood subbase at 0. 

1 Research supported in part by NSF GP 5585. 
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DEFINITION 1. Let T calibrate a les 36 and suppose T: 36—>36 is linear. 
(a) Suppose that there exists a finite universal bound M< oo such 

that for all w£X and pEX 

(1) P(Tu) g Mp(u). 

Then T is Y-finite, or r g ^ r f f ) , and 

(2) | | r j | r = sup{p(Tu) j u G ï , £ G I \ and p(u) « l } . 

(b) If | | r | | r ^ l , 2" is a Y-contraction, or r e e r ( X ) . 
(c) If T is a bijection, and if for all w £ ï and p&T 

(3) #(r«) = #(«), 

then T is a T-symmetry (or T-rotation) or jH£(Rr(39. 

THEOREM 1. (a) (5^(30, || *||r) is a normed algebra with identity over 
F, contained entirely within the algebra £{%) of continuous endomor-
phisms of 36. 

(b) The |j '\\v-topology on 5r(36) is finer than any inherited topology 
of ^-convergence* on 5^(36). 

(c) The unit ball (Br(36) is a simply closed (in 36*) convex, balanced, 
equicontinuous semigroup of operators on 36 (containing the identity I 
on 36). 

(d) (Rr(3Q is the largest group contained in 6r(36), and lies on the sur­
face of e r(X). 

(e) The action map (T, u)—±Tu, the product map (S, T)—*ST and 
the inversion map T—>T~l are continuous, respectively from 5 (̂36) X36 
into 36, from 3 (̂36) X^r(X) into 5^(36), and from the group Qr(36) of ele­
ments T invertible in 5 (̂36) into Sr(36). 

The proof is routine and in large part classical. Notice that if 36 
is a normed space, so that r = { | | - | | } , then 3r

r(X)=<£(X) and | | - | | r 

becomes the usual operator norm. The nonclassical situation presents 
some novelties, however. 

THEOREM 2. Suppose ÊFr(36) is large enough to contain the ideal 
£F(R(36) of continuous operators T of finite rank (T% finite-dimensional). 
Then H is normable (admits a calibration T' = {]| •))}). 

Recalling that $F(R(36) is simply dense in «£(£) ("large") this result 
says that ^(36) is "large" iff H is normable. The proof uses Theorem 
1(e) and a result of Williamson [ô]. 

2 Here €> is a family of bounded sets with span (27©) «36, and we refer to the 
topology of uniform convergence on these sets. 

file://'//v-topology
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Finally, let B be a closed, convex, balanced, bounded (ccbb) set in 
36, let 36s = span (22), and for UETUB, let 

(4) | |«| |B = inf{\ > 0 | X-% G B}. 

Then (36B, || -1|^) is a normed space with unit ball B and a finer topol­
ogy than the relative initial topology from 36. We call 36 normcomplete 
("complete in the sense of Mackey") iff every (36#, || -US) is complete, 
as B ranges over the ccbb sets. If 36 is complete, quasicomplete, or 
sequentially complete, it is normcomplete (see [2]). 

THEOREM 3. (a) If 36 is normcomplete, then 3 (̂36) is complete, and is 
a Banach algebra. 

(b) Conversely, if 5 (̂36) is a Banach algebra f or every calibration T 
for ï , then 36 is normcomplete. 

This result is essentially a corollary of Theorems 5 and 6 in [2], 
although a much more transparent proof will be given in [5]. 

2. Finite operators and recalibration. The following result is the 
keystone of the theory announced here. I t not only leads to all sub­
sequent results, but it also provides the principal bridge between the 
theory and its applications. Essentially, it removes all dependence 
upon a fixed "geometrical" T and places the theory in its proper 
topological context. 

THEOREM 4. (a) A semigroup SC<£(36) is equicontinuous on 36 iff 
there exists a calibration for 36 such that S consists of T-contractions: 

8CCr( ï ) . 
(b) Similarly, a group 9C<£(36) is equicontinuous iff there exists a T 

such that gC(Rr(36). 
(c) Indeed, suppose T' is some given calibration for 36. Then a suitable 

calibration f or (a) or (b) can be constructed by defining for alluE% and 
P'ET' 
(5) p(u) = sup{p'(Tu) | T G S or T = / } 

(take$ = Qin (b)) andT={p\p'ET'}. 

Both the recipe (S) and the proof itself hark back to the well-known 
classical proof that a Banach space can be equivalently renormed so 
as to make an operator-norm-bounded semigroup S into a contraction 
semigroup. The result then focuses our attention upon the following 
canonical set of operators. 

DEFINITION 2. An operator TE&&) is finite, or TE$Qt)t iff for 
some finite t< oo, t~lT generates an equicontinuous semigroup. 
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COROLLARY 5. ^(36) = U {3^(36) \T is a calibration f or the les 36}. 

This corollary allows us to identify innumerable nontrivial opera­
tors r££ (36) which must appear in ^(36), hence in some nontrivial 
ffr(ï). 

PROPOSITION 6. Suppose T£<£(£) satisfies a polynomial identity 
P(T) = 0,for P some nontrivial polynomial over F. Then TÇ^ïïÇX). 

Nilpotent operators, with 7^ = 0 for some k, and idempotent projec­
tion operators, with E2 = E, are typical examples. Operators of finite 
rank, being essentially matrices, also satisfy a polynomial identity. 

THEOREM 7. The set <£(B(36) of locally bounded operators T in £(36) 
(for some zero-neighborhood NT, TNT is bounded) is an ideal in «£(36) 
contained entirely within ^(36). 

Such familiar operators as compact operators (TNT compact or 
precompact), and hence nuclear operators and operators of finite rank, 
appear in <£<B(ï) and hence in $(£). If 36 is not normable, Theorem 2 
and these observations show that $r(%) depends heavily on the choice 
of T: every finite-rank TE^ÖlCï) ü es in some 5^(36), but no single 
9^(36) can accommodate all of $(R(X). In fact, some 5^(36) degenerate 
into the trivial algebra FI, so the recalibration part of Theorem 4 
effects a genuine qualitative change in the situation, "making room" 
for operators not previously admitted to (Fr(36). 

I t is also the case that the || -|| r topologies vary wildly with T: an 
algebra G. is known which is contained in uncountably many different 
^r(3Ê) and inherits pair-wise distinct | | - | | r topologies from these. 
(Recall that if 36 is Banach, then the operator norm topology on «£(36) 
is the unique Banach algebra topology for «£(36).) 

The following consequence of Theorem 4 is very useful in setting 
up correspondences between continuous 'T-symmetry" representa­
tions of locally compact groups G (generalized unitary representa­
tions) and continuous representations of their measure algebras M (G) 
or group algebras Ll(G). I t admits a clumsy generalization to non-
barreled spaces. 

THEOREM 8. Let pbe a weakly continuous representation of a normed 
algebra Q on a barreled les 36. (That is, let p: A—>«£(36) be a homomor-
phism such that for alluÇz& and w*£36*, x-*(p(x)Uy u*) is continuous.) 
Then there exists a calibration T, such that p is a norm-decreasing homo-
morphism of A into Fr(X). 

Similarly, one can prove a maximality result concerning the 3 :r(ï) . 
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PROPOSITION 9. Suppose GLC.&00 admits a multiplicative norm 
|| -|| and norm topology such that & acts continuously on 9C. Then there 
exists a calibration T such that CtC^rCï) and for all TE Cfc, |[ T\\ è || T\\ r. 

4. Spectral theory. Let the ground field F= C in this section, write 
C* = C\J { oo }, the Riemann sphere, and the usual conventions about 
holomorphy "at oo " will hold. 

DEFINITION 3. Let A be closed and densely defined on 36. 
(a) Then XG C is in the finite resolvent set pp(A) iff X— 4̂ possesses 

an inverse (X—^4)~1£9r(3E). The point <x> is in p*(A) iff A Çz&Qt). 
(b) The finite spectrum is tr*(A) = C*~p*(i4). 

THEOREM 10. Let X è# normcomplete. 
(a) TÂew p*(^4) Î5 open, so <r*(A) is compact in C*. 
(b) The map X—KX — ̂ l)"1 admits a boundedly convergent power 

series expansion about each X£p*(.4), so for w£36 and &*£X*, the 
function X—>((X—A)-^, u*) is holomorphic. 

(c) Suppose 3£ is barreled, and suppose Xo w a £<?iw£ in the classical 
resolvent set pe(A) = {X£c[ (X —-4) -1 #&is/s in <£(£)} wi£& a neighbor-
hood NÇKo)(Zpc(A) such that X—»((X —-4)_1«, «*) w holomorphic on 
N(K0)for all uE% and w*GX*. jTfte»X0Ep*(4). 

DEFINITION 4. Let r c s ^ X ) . Then the radius of equicontinuity of T 
is rJE?(r)=inf {*£:(0, oo)!*-1!" generates an equicontinuous semi­
group}. 

THEOREM 11. (a) On any commutative algebra ŒC^Cï), rE is a multi­
plicative seminorm such that rE(Th) = rs(T)kfor all integers k^O. 

(b) For TÇz$(X)9rE(T) is the spectral radius 

(6) ^(r)-su P { |x | |xeer F (r)} . 
Thus rE exactly imitates the spectral radius for a Banach algebra, 

where r9(T) =lim{[|Th\\lfk\ Jfe-»°o }. The proofs are reduced to the 
Banach algebra theory via an approximation lemma. If T calibrates 
3£, write a%(A) = {XGC*[ [X= oo and AE$r(%)] or [(X--4)"1 exists 
in(Fr(X)]} ando-J(^) = C * ^ p r ( ^ ) . 

LEMMA 12. Suppose U is an open neighborhood of a}(A). Then there 
exists a calibration V such that 

(7) o*F(A) C <r*(A) C U. 

This lemma also makes possible an exact generalization of the 
usual operational calculus for operators i o n a Banach space, using 
the Cauchy integral formula (where it converges). 
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(8) f(A) = (2Ti)-1 ff(X)(\ - A)-H\ 

for ƒ holomorphic on a neighborhood of crp(A) and y an arc orientedly 
encircling cr*(̂ 4) inside that neighborhood. The same technique allows 
an elementary theory of spectral projections associated with com­
pact, relatively open subsets of the spectrum. The methods are 
nearly those of Allan [ l ] . 
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