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1. Introduction. Let GF denote the group of all homeomorphisms 
of the topological space F onto itself, and let GF* be similarly defined 
for a space F'. If GF and GF> are topologized under the point open 
topology, and if there is a function from GF onto GF» which is a 
homeomorphism as well as an algebraic isomorphism then Wechsler 
[l ] has determined a sufficient condition for the spaces F and F' to 
be homeomorphic. Thomas [2] has recently generalized Wechsler's 
theorem by weakening this condition on the spaces F and F'. It is the 
purpose here to generalize Wechsler's theorem in a different direction 
by using a group of functions other than a group of homeomorphisms. 

2. Preliminaries. Most of our notation can be found in [l] and [2] ; 
for reference we include the following. The space F is n-homogeneous 
with respect to a group of functions G provided for any pair of proper 
w-tuples (xi, - • • , xn), (yu • • • , yn)> there is a g in G such that 
g(xi) =:y», i = 1, • • • , n. The space F is (^-homogeneous with respect to a 
group of functions G provided it is ^-homogeneous with respect to G 
for each positive integer n. 

Let Gx = {fÇzG:f(x) =#} . Then Gx is a subgroup of G and will be 
called the subgroup of the point x. Furthermore G/Gx will denote the 
set of left cosets, and cosets will be written as fGx. 

We will use the point open topology on G and will consider G/Gx 

to have the topology induced by the natural mapping, that is, 
vx\ G—>G/GX defined by vx(h) =*hGx is to be continuous so that a set U 
is open in G/Gx if and only if v^l{U) is open in G. All spaces are T2. 

Our main theorem is as follows: 

THEOREM 1. Let F be a topological space, and let G denote a group of 
one-to-one functions from F onto itself with respect to which F is ^-homo­
geneous, and let F' and G' be similarly defined. Suppose that $ is a 
homeomorphism from G onto G' such that * is an isomorphism. Then 
there is a homeomorphism from F onto F'. 

The proof of the main theorem will be accomplished by showing the 
existence of a sequence of homeomorphisms whose composition will 
then be the desired homeomorphism between F and F'. We prove 
first that G/Gx is homeomorphic to F. We then show that $ induces a 
homeomorphism from G/Gx onto G1/$(GX). It is next shown that the 
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subgroup $(GX) is, in fact, the subgroup of a point y in F', i.e. $(GX) 
= G„'. We have then that G'/$(GX) ^G'/Gy . Finally, an application 
of the first result gives that G'/Gy' is homeomorphic to F'. Thus, 
letting ~ denote the relation of homeomorphism, we have 

F ~ G/Gx a G'/$(GX) = G'/Gi c* F' 

and therefore F is homeomorphic to F'. 

3. The sequence of homeomorphisms. A subbasis element in G is 
denoted by W(y, U) — {fGG:f(y)ÇzU} where y is a point of F and 
U is an open set in F. A basis element is denoted by W(y, V) where 
y = (yu • • • > yn) is a proper w-tuple and U=(Ui, • • - , Un). The 
symbol W(y) is used to denote {z£;F: g(y) =2, g G I F } . 

LEMMA 1. The function fxx: G--> F defined by fxx(h) =h(x) is continuous 
and open. 

PROOF. This is shown in [ l ] for a group G of homeomorphisms. I t 
is easily seen that the continuity and openness of elements of G are 
not required. 

THEOREM 2. The function 6X: G/GX—>F defined by 6x(hGx) =h(x) is a 
homeomorphism. 

PROOF. The comment in the proof of Lemma 1 applies here also. 
Suppose F' is a Hausdorff topological space which is co-homo­

geneous with respect to a group G' of one-to-one functions from F' 
onto itself. Suppose further that there is a homeomorphism $ from 
G to G' which is an isomorphism. Let H = GX and H' =&(GX). 

LEMMA 2. Using the notation of the previous paragraph, $ induces a 
homeomorphism between G/H and G'/H' defined as 0=z'/4>^J1, where 
v' is the natural map from G' onto G'/H'. 

PROOF. Trivial. 
Our next task is to show that H' is the subgroup of a point y(EF'. 

For this we will need several lemmas. 

LEMMA 3. / / / G G — i î , then HfH is dense in G. 

PROOF. The proof is contained in Theorem 3.1 of [2] where again 
the continuity and openness of elements of G are not required. 

LEMMA 4. H' is a proper closed subgroup of G'. 

PROOF. Trivial. 
Throughout the remainder W($, V) will denote a nonempty basic 

open set in G' —H' such that # £ F / w , "ÜCF'n and n is the smallest 
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integer with this property. If w = (wu • • • » Wn) denote (wi, • • • , 
Wp_i, w p + i , • • • , wn) b y # p . 

LEMMA S. If n>\ then H'(xk) is dense in Ffn~l and therefore infinite 
in each component. 

PROOF. If there is an open set OQF,n~l which does not intersect 
Hf(xk)y then W(xk, 0) contradicts the minimality of n. 

LEMMA 6. If n>\ there exist two independent points in H'{x). 

PROOF. The proof is as in Lemma 3.14 of [ l ] . 

LEMMA 7. Suppose there is an n-tuple z in H'(x) independent of x. 
Then x lies in infinitely many distinct sets of the form g(H'(x)) where g 
is in G'. 

PROOF. This proof is obtained in the same manner as the similar 
result in [2, Lemma 2.4]. 

THEOREM 3. For some y in F', H' = Gy'. 

PROOF. Having established the preceding Lemmas, the proof given 
in [2, Theorem 3.1] applies. 

4. Proof of Theorem 1. From Theorem 2, we have that F and G/Gx 

are homeomorphic and so also are F' and G'/Gy . That G/Gx and 
G'(Q(Gx) are homeomorphic is a consequence of Lemma 2. Theorem 3 
establishes the equality of G'/$(GX) and G'/Gy. Thus 

F ~ G/Gx £* &/*(G.) = G'/Gi c* Ff 

and therefore F and F' are homeomorphic. 
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