REFERENCES

- 1. B. R. Gelbaum, Tensor products of Banach algebras, Canad. J. Math. 11 (1959), 297-310.
- 2. ——, Note on the tensor product of Banach algebras, Proc. Amer. Math. Soc. 12 (1961), 750-757.
 - 3. S. Mac Lane, Homology, Springer-Verlag, Berlin, 1963.
 - 4. C. E. Rickart, Banach algebras, Van Nostrand, New York, 1960.

University of California, Irvine

ON EIGENVALUE DISTRIBUTIONS FOR ELLIPTIC OPERATORS WITHOUT SMOOTH COEFFICIENTS. II

BY RICHARD BEALS¹

Communicated by Gian-Carlo Rota, April 5, 1968

In two previous papers the known asymptotic formula for the eigenvalues of a selfadjoint elliptic boundary value problem was extended to some cases of operators without smooth coefficients: to the Dirichlet problem in [1] and to the general coercive differential boundary value problem in [2]. The object of this note is to complete this study by proving the formula for general (i.e. not necessarily differential) boundary value problems on domains without smooth boundary. We use the methods of [1], [2]. It should be noted that the case of differential boundary conditions can be handled in a different way; see [3].

Let Ω be a bounded open set in R^n with boundary $\partial \Omega$ which is regular in the sense of Calderón [4], i.e. satisfying the "restricted cone condition." Let $A = \sum a_{\alpha}(x)D^{\alpha}$ be an operator defined on Ω , with coefficients in $L^{\infty}(\Omega)$ and top-order coefficients uniformly continuous on Ω . We assume that A is formally selfadjoint and uniformly elliptic of order m. Let A be a selfadjoint realization of A in $L^2(\Omega)$, with domain $D(A) \subset H^m(\Omega)$. Set

$$c(A) = (2\pi)^{-n} \int_{\Omega} \int_{a(x,\xi)<1} d\xi dx,$$

¹ Research partially supported by a contract with the Army Research Office—Durham.

where $a(x, \xi)$ is the characteristic polynomial of **A** at x.

THEOREM. For $\lambda > 0$, let $N(\lambda)$ be the number of eigenvalues of A with absolute value $<\lambda$, counting multiplicity. Then

(2)
$$N(\lambda) \sim c(A)\lambda^{n/m}$$
 as $\lambda \to \infty$.

We may replace A by A + tI for some real t and assume that A has a bounded inverse S. Set

(3)
$$\mu_j(S) = \inf_{\text{odim } K = j-1} \sup_{u \in K, ||u|| = 1} ||Su||,$$

(4)
$$\alpha(S) = \lim_{j \to \infty} \inf j^{-m/n} \mu_j(S),$$

(5)
$$\beta(S) = \lim_{j \to \infty} \sup_{j \to \infty} j^{-m/n} \mu_j(S).$$

The assertion of the Theorem is equivalent to $\alpha(S) = \beta(S) = d(A)$, where

$$d(\mathbf{A}) = (c(\mathbf{A}))^{m/n}.$$

By Theorem 5.2 of [2], $\alpha(S) \ge d(\mathbf{A})$. We must show $\beta(S) \le d(\mathbf{A})$.

Let A_{ϵ} , $0 < \epsilon < 1$, be a family of formally selfadjoint operators of order m defined on a neighborhood of $\Omega \cup \partial \Omega$ and having C^{∞} coefficients, such that the coefficients of the principal parts converge uniformly on Ω to those of the principal part of A as $\epsilon \to 0$. Let A_{ϵ} be the restriction of A_{ϵ} to D(A). For small ϵ , A_{ϵ} is uniformly elliptic on Ω and A_{ϵ} has a bounded inverse S_{ϵ} . By Theorems 1.5 and 2.3 of [2], $\beta(S_{\epsilon}) \to \beta(S)$ as $\epsilon \to 0$. Clearly $d(A_{\epsilon}) \to d(A)$, so it suffices to prove the following.

LEMMA. Let \mathbf{A}_0 be a formally selfadjoint operator defined on a neighborhood of $\Omega \cup \partial \Omega$, having C^{∞} coefficients, and uniformly elliptic on Ω , of order m. Let \mathbf{A}_0 be the restriction of \mathbf{A}_0 to a domain $D(A_0) \subset H^m(\Omega)$. Suppose A_0 has a bounded inverse S_0 . Then $\beta(S_0) \leq d(\mathbf{A}_0)$.

PROOF. Let Ω_1 be a bounded neighborhood of $\Omega \cup \partial \Omega$ having a smooth boundary, such that A_0 is defined and uniformly elliptic on Ω_1 . Let A_1 be the Dirichlet realization of A_0 in $L^2(\Omega_1)$. Then A_1 is selfadjoint and (2) holds for the eigenvalues of A_1 . We may assume A_1 has a bounded inverse S_1 .

Let $R: L^2(\Omega_1) \to L^2(\Omega)$ be the restriction mapping and $J = R^*: L^2(\Omega) \to L^2(\Omega_1)$ the extension mapping. Then JR = P, the projection of $L^2(\Omega_1)$ onto functions vanishing outside Ω . Let $H_1 = \{u \mid RS_1u \in D(A_0)\}$.

This is a closed subspace of $L^2(\Omega_1)$; let P_1 be the corresponding projection. Then $S_0RP_1=RS_1P_1$. If $v\in D(A_0)\subset H^m(\Omega)$, it can be extended [4] to a $u\in H_c^m(\Omega_1)\subset D(A_1)$. Therefore R maps H_1 onto $L^2(\Omega)$. Then J is a unitary mapping of $L^2(\Omega)$ onto $PH_1=PL^2(\Omega_1)$ and R is its inverse; S_0 corresponds to JS_0R acting on $PH_1=PP_1L^2(\Omega_1)$. Therefore

$$\mu_j(S_0) \le \mu_j(JS_0RPP_1) = \mu_j(JS_0RP_1)$$

= $\mu_j(JRS_1P_1) = \mu_j(PS_1P_1) \le \mu_j(S),$

and $\beta(S_0) \leq \beta(S_1) = d(A_1)$, where A_1 denotes A_0 considered as defined on Ω_1 rather than on Ω . We get the desired conclusion by shrinking Ω_1 .

REFERENCES

- 1. R. Beals, On eigenvalue distributions for elliptic operators without smooth coefficients, Bull. Amer. Math. Soc. 72 (1966), 701-705.
- 2. ——, Classes of compact operators and eigenvalue distributions for elliptic operators, Amer. J. Math. 89 (1967), 1056-1072.
- 3. ——, Global asymptotic estimates for elliptic spectral functions and eigenvalues, Bull. Amer. Math. Soc. 74 (1968), 358-360.
- 4. A. P. Calderón, Lebesgue spaces of differentiable functions and distributions, Proc. Sympos. in Pure Math., vol. 4, Amer. Math. Soc., Providence, R. I., 1961.

University of Chicago