A SPECTRAL SEQUENCE FOR CLASSIFYING
LIFTINGS IN FIBER SPACES!
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Consider the following diagram of pointed spaces and maps

Y
k1
?
x 3

where pg=f and p is a fibration with fiber F. Suppose that X is a
CW-complex of dimension =2conn(F) and conn(F)=1 (conn
=connectivity). Let [X, Y]z be the set of homotopy classes of
peinted maps over f(H: X XI—Y is a homotopy over f if pH,=f for
each t€1I). Becker proved in [2], [3] that under these hypotheses
[X, Y]s can be given an abelian group structure with [g] as zero
element.

The purpose of this note is to describe a spectral sequence of the
Adams type which converges to [X, Y]s. The differentials of the
spectral sequence are the twisted operations described in [6], [7].
The sequence has the same relation to the method of computing
[X, V]5 used in [6], [7] as the Adams spectral sequence has to the
killing-homotopy method of computing ordinary homotopy groups.
This note should be read as a sequel to [7].

A different spectral sequence for [X, Y] is given by Becker in [3].
A sequence apparently similar to the one to be described here is men-
tioned in [4] and credited to Becker and Milgram.

1. The spectral sequence. Consider the following commutative
diagram:

V& Y

; lq »

J/Y ?__— B
x=" 5
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where V2 is the square of Y, i.e. the pullback of p by p, and s is the
canonical cross section. Write (Y2, Y) for (Y2, s(Y)). Let A=4, be
the mod p Steenrod algebra and use Z, coefficients for all cohomol-
ogy. Let ¢: FCY? and assume that ¢*: H*(Y?)—>H*(F) is onto. As-
sume also that H;(F; Z) is finitely generated for each j. Let A(Y)
=H*(Y)©®4 be the Massey-Peterson algebra [5]. Then H*(V?, ¥)
and H*(X, %) are A(Y) modules via p: 2> Y and g: X—7.

THEOREM. Under the above hypotheses, there is a spectral sequence
such that

(1) Ey'=Extqh(H*(Y?, Y), H*(X, %))

(2) E%=Bes/Betletl where [X, V]pg=B°°DBL1DB2:D ...

and N\B**=all elements of [X, Y]z of finite order prime to p.

Notes. (1) H*(Y?, V) can be easily computed as an 4 (Y) module in
terms of H*(Y) by the results of [5].

(2) Low level computations with the spectral sequence are not
difficult. However, the results can be obtained also, and sometimes
more easily, by the methods of [6], [7]. The spectral sequence should
ultimately prove valuable for proving general theorems about
[X, Y]s (e.g., about immersion groups).

(3) If B=x (a point) then the spectral sequence reduces, after a
little manipulation of E,, to the Adams spectral sequence for [X, ¥].

2. Sketch of the proof. Let 3V be the category of all ttiples
(2, %, 2) where Y Z2 Y and #£=1, i.e., of all coretractions of YV
with given retraction. A morphism in the category is a map m: Z—W
such that m¥=1 and @m =32. Recall from [6], [7] that one can de-
fine a notion of homotopy in 3Y (in the obvious way) and also cone,
suspension, path, and loop functors enjoying the same properties as
the usual functors on 3% (=the ordinary category of pointed spaces
and maps). The cone-suspension sequence (Puppe sequence) and the
path-loop sequence are exact after application of {(~, Z) and (Z, —)
respectively. (—, —) denotes the set of homotopy classes of maps in
the category. In brief, all the notions concerning 3# generalize to 3.

We will now apply an upside down version of Adams’ method [1]
to g: Y2—Y. Since [X, Y]B= [X, Yz]y= (XVVY, 1?), we can work in
3Y. Suspension of Y2 in 3Y has the effect of suspending F in 3*. Suc-
cessively larger pieces of the spectral sequence are obtained by taking
successively higher suspensions of Y2, We will be content here with
one piece. Assume conn(F) =#. Consider the following commutative
diagram in J*.
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Each 4; is a product of K(Z,, j)'s. a1=(q, #), where u = (41, 42, + * *)
and the 7*u;'s form a set of A generators for Hi(F), j<2n-1.
U= (Vm.1, Um,2, * + + ) and the v,,,;'s form a set of 4(Y) generators for
(ker )i, j=2n+1.

The tower can be formally written as a new tower in 3Y simply by
replacing 4, m>0, by Y X4, and v, by (¢m, ¥n) Where gn: Y=Y
is from the original tower. Each fibration Y,—Y,, is a fibration in
3Y induced from a principal fibration in 3Y.

Now apply the functor (X\ Y, —). The resulting exact couple
gives the promised piece of the sequence.
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