A SPECTRAL SEQUENCE FOR CLASSIFYING LIFTINGS IN FIBER SPACES¹

BY J. F. McCLENDON

Communicated by Walter Feit, February 9, 1968

Consider the following diagram of pointed spaces and maps

where pg = f and p is a fibration with fiber F. Suppose that X is a CW-complex of dimension $\leq 2\text{conn}(F)$ and $\text{conn}(F) \geq 1$ (conn = connectivity). Let $[X, Y]_B$ be the set of homotopy classes of pointed maps over $f(H: X \times I \rightarrow Y)$ is a homotopy over $f(H: X \times I \rightarrow Y)$ is a homotopy over f(F) = f(F) for each $f \in F$. Becker proved in [f] = [f] that under these hypotheses [f] = [f] can be given an abelian group structure with [f] as zero element.

The purpose of this note is to describe a spectral sequence of the Adams type which converges to $[X, Y]_B$. The differentials of the spectral sequence are the twisted operations described in [6], [7]. The sequence has the same relation to the method of computing $[X, Y]_B$ used in [6], [7] as the Adams spectral sequence has to the killing-homotopy method of computing ordinary homotopy groups. This note should be read as a sequel to [7].

A different spectral sequence for $[X, Y]_B$ is given by Becker in [3]. A sequence apparently similar to the one to be described here is mentioned in [4] and credited to Becker and Milgram.

1. The spectral sequence. Consider the following commutative diagram:

¹ This research was partially supported by NSF Grant GP-6520.

where Y^2 is the square of Y, i.e. the pullback of p by p, and s is the canonical cross section. Write (Y^2, Y) for $(Y^2, s(Y))$. Let $A = A_p$ be the mod p Steenrod algebra and use Z_p coefficients for all cohomology. Let $i: F \subset Y^2$ and assume that $i^*: H^*(Y^2) \to H^*(F)$ is onto. Assume also that $H_i(F; Z)$ is finitely generated for each j. Let A(Y) $=H^*(Y) \odot A$ be the Massey-Peterson algebra [5]. Then $H^*(Y^2, Y)$ and $H^*(X, *)$ are A(Y) modules via $p: Y^2 \rightarrow Y$ and $g: X \rightarrow Y$.

THEOREM. Under the above hypotheses, there is a spectral sequence such that

- (1) $E_2^{s,t} = \operatorname{Ext}_{A(Y)}^{s,t}(H^*(Y^2, Y), H^*(X, *))$ (2) $E_{\infty}^{s,s} = B^{s,s}/B^{s+1,s+1}, \text{ where } [X, Y]_B = B^{0,0} \supset B^{1,1} \supset B^{2,2} \supset \cdots$

and $\bigcap B^{s,s} = all$ elements of $[X, Y]_B$ of finite order prime to p.

Notes. (1) $H^*(Y^2, Y)$ can be easily computed as an A(Y) module in terms of $H^*(Y)$ by the results of [5].

- (2) Low level computations with the spectral sequence are not difficult. However, the results can be obtained also, and sometimes more easily, by the methods of [6], [7]. The spectral sequence should ultimately prove valuable for proving general theorems about $[X, Y]_B$ (e.g., about immersion groups).
- (3) If B = * (a point) then the spectral sequence reduces, after a little manipulation of E_2 , to the Adams spectral sequence for [X, Y].
- 2. Sketch of the proof. Let 5 Y be the category of all triples (Z, \tilde{z}, \hat{z}) where $Y \xrightarrow{\tilde{z}} Z \xrightarrow{\hat{z}} Y$ and $\hat{z}\tilde{z} = 1$, i.e., of all coretractions of Y with given retraction. A morphism in the category is a map $m: Z \rightarrow W$ such that $m \dot{z} = \dot{w}$ and $\hat{w}m = \hat{z}$. Recall from [6], [7] that one can define a notion of homotopy in $\Im Y$ (in the obvious way) and also cone, suspension, path, and loop functors enjoying the same properties as the usual functors on 3* (=the ordinary category of pointed spaces and maps). The cone-suspension sequence (Puppe sequence) and the path-loop sequence are exact after application of $\langle -, Z \rangle$ and $\langle Z, - \rangle$ respectively. $\langle -, - \rangle$ denotes the set of homotopy classes of maps in the category. In brief, all the notions concerning 3* generalize to 3Y.

We will now apply an upside down version of Adams' method [1] to q: $Y^2 \rightarrow Y$. Since $[X, Y]_B = [X, Y^2]_Y = \langle X \vee Y, Y^2 \rangle$, we can work in 5Y. Suspension of Y^2 in 5Y has the effect of suspending F in 5*. Successively larger pieces of the spectral sequence are obtained by taking successively higher suspensions of Y^2 . We will be content here with one piece. Assume conn(F) = n. Consider the following commutative diagram in 3*.

Each A_i is a product of $K(Z_p, j)$'s. $a_1 = (q, u)$, where $u = (u_1, u_2, \cdots)$ and the i^*u_j 's form a set of A generators for $H^j(F)$, $j \leq 2n+1$. $v_m = (v_{m,1}, v_{m,2}, \cdots)$ and the $v_{m,j}$'s form a set of A(Y) generators for (ker a_m^*j , j = 2n+1.

The tower can be formally written as a new tower in $\Im Y$ simply by replacing A_m , m>0, by $Y\times A_m$ and v_m by (q_m, v_m) where $q_m\colon Y_m\to Y$ is from the original tower. Each fibration $Y_m\to Y_{m-1}$ is a fibration in $\Im Y$ induced from a principal fibration in $\Im Y$.

Now apply the functor $\langle X \vee Y, - \rangle$. The resulting exact couple gives the promised piece of the sequence.

References

- 1. J. F. Adams, On the structure and applications of the Steenrod algebra, Comment. Math. Helv. 32 (1958), 180-214.
- 2. J. C. Becker, Homotopy theory of cross-sections and equivariant maps in the stable range, Thesis, University of Michigan, 1964.
 - 3. ———, Cohomology and the classification of liftings (to appear).
 - 4. A. Liulevicius, The cohomology of Massey-Peterson algebra (to appear).
- 5. W. Massey and F. Peterson, The cohomology structure of certain fiber spaces. I. Topology 4 (1964), 47-66.
- 6. J. F. McClendon, Higher order twisted cohomology operations, Thesis, Univ. of California, Berkeley, 1966.
 - 7. ——, Higher order twisted cohomology operations (to appear).

YALE UNIVERSITY