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The three subjects of the title are bound together by an interesting 
combinatorial identity, stated below as Theorem 1. This identity is 
itself rooted in special cases which have already appeared in the 
literature [3], but it could not have been stated in its full generality 
before the well known work of Rota [4] on Möbius functions. Indeed, 
we have here a good example of the unifying power of the concept of 
a Möbius function on a lattice in combinatorial analysis, for we are 
able to deduce as corollaries of this one piece of machinery (a) the 
evaluation of a determinant appearing in [l] as an example of a 
matrix of ± l's whose determinant is "nearly" the Hadamard upper 
bound, (b) a theorem of [2] which is a partial generalization of (a), 
but is tied closely to a particular lattice, (c) perhaps most interesting, 
based on [4] we are able to exhibit a symmetric matrix depending on 
a parameter X which is singular if and only if a given graph cannot be 
colored in X colors. This matrix is reminiscent of another one found 
earlier by G. D* Birkhoff [5]. 

In reference [l] there appears an evaluation of the following de­
terminant of ± l ' s . Let a(i, j) denote the number of l's in common 
positions in the binary expansions of the integers i and j , and define 
an (n + l)X(n + l) matrix M(n) by 

(1) M(n)a = (-l)««.i> (i,j - 0, 1, . . . , n). 

The authors showed, by an inductive argument, that 

(2) |det Jf(n)| = 2A™ 

where A(n) =ce(0)+a(l)+ • • • +a(n) and a(m) is the sum of the 
binary digits of w. For large n} one has 

(3) 2^<»> ^ »»/»<i-*/iog n> (c < 1) 

so that (2) is reasonably close to the Hadamard upper bound nnf2. 
In reference [2] there appears a generalization of the above results 

to lattices of subsets of a finite set, as well as investigations relating 
to bases other than 2. 
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The germ of a more far-reaching generalization of these theorems 
is contained in a pair of problems in Pólya-Szegö ([3, §VIII, Prob­
lems 32-33]), and the recent paper of Rota [4] on the use of the 
Möbius function of a lattice in combinatorial investigations. 

Let there be given a partial order " < " for the integers 0,1, • • • , n. 
Define the "zeta-function" of the partial order as the (n+l)X(n+l) 
matrix 

(4) ta -

Consider the matrix 

(5) 

i l j Û i, 
\0 otherwise, 

r - f AÇT 

where A is a diagonal matrix with a0, #i, • • • , an on the diagonal, 
the ai being arbitrary. One evidently has 

det r = (det ,4)(detf)2 

= aodi • • • an. 

On the other hand, 

k 

^ H <>k (i,j = 0, 1, • • • , n). 
k<i; k<j 

Let us define 

(6) Ai = £ #* 
k$i 

and let us write i/\j for the greatest lower bound ("meet") of i and j . 
Then we have found that 

(7) det AiAj = #00102 • * • on 

where the Ai and a» are related by (6). We can now eliminate the a*-
completely by inverting the formula (6). This gives 

(8) at « ]C n(i} k)Ak (i = 0, 1, • • • , n) 
k<i 

where \x is the Möbius function of the lattice (see [4]), and is defined 
as the inverse of the matrix £*. Substituting (8) in (7) we find 
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THEOREM 1. Let A0, Au • • • , An be arbitrary numbers, and let ix 
be the Möbius function of a lattice-ordering < of {O, 1, 2, • • • , n}. 
Then 

(9) det 4,Ay] * = f t { Z M&», k)Ak\ . 

COROLLARY 1. Let A^ • • • , An be a sequence of ± 1, and let /x(m, k) 
be the Möbius function of a lattice partial ordering ^ . Then the geometric 
mean of the numbers 

(m = 0, 1, • • • , n) 

is at most (n + 1)112. 

PROOF. After (9), this is just Hadamard's inequality. 

COROLLARY 2. Equation (2) holds, where M{n) is given by (1). 

PROOF. Define the ordering ^ by a^.b if each binary digit of a 
is ^ the corresponding digit of b. The lattice {0, 1, • • • , n\ is then 
isomorphic to all subsets of a finite set, whose Möbius function is 
well known to be 

M(5, T) = ( - 1 ) ' * * * (TQS). 

Hence 

M(a> b) = (-l)«c*>-«<«> (J < a) 

where a:(m) is the number of nonzero digits of m. Taking Am = ( — l ) a ( m ) , 
we obtain from (9) 

det AiAi\ « det (-l)««Ai> ] 
Jo Jo 

= d e t ( ~ l ) « ( ^ M 
J o 

= n { E (-i)«w-«<*>(-i)«»>> 
w*0 V &<m * 

= (-2)A<n) 

as required. 

LEMMA 1. If r^s means that the b-ary digits of r are ^ those of s, 
where b>\ is fixed, then 



1968I CHROMATIC NUMBER OF A GRAPH 963 

M(S> r)*=( — l)v if P digits of r are 1 less than those of s, the rest equal 
= 0 otherwise. 

PROOF. We use Rota's crosscut theorem [4], Fix r, s, r<s. In the 
interval r^x^s the crosscut of dual atoms consists of those numbers 
x which agree with s in all digits except one, where, in the latter, the 
digit of x is 1 less than the corresponding digit of s. The meet of any 
collection of dual atoms is a number whose digits are at most 1 less 
than the digits of 5. Hence if some digit of 5 exceeds the corresponding 
digit of r by 2 or more, fx(s, r) = 0, since no spanning subsets exist. 

In the contrary case, exactly v digits of r are 1 less than the cor­
responding digit of 5, the remaining digits being identical (z>^l). 
Then a spanning subset is a collection of dual atoms whose decreased 
digits are identical with these J>. The number of spanning subsets of 
k elements is thus 

qh = 1 k = v, 

= 0 k9*v. 

The crosscut theorem gives in this case 

A*fo r) = q2 —q% + q* - • • • = ( - 1 ) " . 

Now let <Xb(m) denote the sum of the &-ary digits of m. Then, in 
the case where fx(s, r) ?*0 in Lemma 1, ju(s, r) is equal to ( — 1 )«&<»)-«&<»•>. 
Hence, put Aj = ( — l)abU\ Then from the theorem we find easily 

COROLLARY 3. We have 

I l n I 
det( - l )VA>'> = 2h <»> 

I J *,y-o I 
where ifsb(n)—r)b(0)+ • • • +rjb(n) and rjb(m) is the number of nonzero 
b-ary digits of m. 

As a final application, to graph coloring, we observe that Theorem 1 
is in no way tied to the use of integers as members of the ordered set. 
Indeed, if ƒ is a function from an arbitrary lattice L to, say, the com­
plex numbers, we have 

(10) det f(S AT)] = I I { Z M(S, T)f(T)\ 
J s,TeL seL {T±S ) 

as well as the dual form 

(11) detf(S V 7)1 = I I J 23 M(Z\ S)f(T)\ 
J S,TeL SEL \T£S ) 



964 H. S. WILF 

which arises from using f^af in (5). For the lattice L take the collec­
tion of all bond-closed (see [4]) sets of edges of a given undirected 
finite graph G, and take 

f(T) = \^-r(T)) (j e Z ) 

where n is the number of vertices of G, r(T) is the rank of T (i.e., 
number of vertices of T minus the number of connected components) 
in the lattice Z, and X is an indeterminate. Then, from [4] we 
know that 

Pfr,S) = E ^ 5 ) / ( r ) (SEL) 
S<T 

is the number of colorings of G whose bond is S. Then from (11) 

(12) det [\**"MT>]s.reL « I I P(\ S). 

Suppose G is ^-colorable. Then p(kt (/>)= chromatic polynomial of G 
is > 0 . If, for example, G is critical, in the sense of Dirac, then 
p(k, S) > 0 also, for we can color G — S in k — 1 colors and all of S as 
the &th, so the matrix or the left is nonsingular. Suppose G is not fe-
colorable. Then p(k, 0 )=O and the matrix is singular. Hence, the 
chromatic number of G never exceeds the least k for which the matrix 
is nonsingular, and if G is critical, is equal to it. 
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