THE STRUCTURE OF TORSION ABELIAN GROUPS GIVEN BY PRESENTATIONS¹

BY PETER CRAWLEY AND ALFRED W. HALES

Communicated by R. S. Pierce, March 1, 1968

Let F_X denote the free abelian group freely generated by the set X, and let R be a subset of F_X . With [R] denoting the subgroup of F_X generated by R, set

$$G(X,R) = F_X/[R],$$

i.e., G(X, R) is that abelian group generated by X and subject only to the relations

$$r=0$$
 all $r \in R$.

If each of the elements in R involves only one generator in X, then G(X, R) is a direct sum of cyclic groups. On the other hand, if G is any abelian group, then $G \cong G(X, R)$, where each element in R involves at most three generators in X; indeed this isomorphism results if we take X = G and R equal to the set of all elements in F_G of the form x+y-z, where z=x+y in G.

Our purpose here is to investigate the structure of the group G(X, R) in the intermediate case when each of the elements of R involves at most two generators, and G(X, R) is a torsion group. We can evidently restrict our attention to p-groups, and in this case it is easily seen that $G(X, R) \cong G(X', R')$, where each element in R' is of one of the forms

$$p^n x$$
 or $p^n x - y$.

This leads us to the following definition. Let X be a set, V be a subset of the set of ordered pairs $\langle x, y \rangle$ with $x, y \in X$, u be a map of X to the nonnegative integers, and v be a map of V to the nonnegative integers. By G(X, V, u, v) we mean that abelian group generated by X and subject only to the relations

$$p^{u(x)}x = 0$$
 all $x \in X$,
 $p^{v(x,y)}x = y$ all $\langle x, y \rangle \in V$.

We say that an abelian p-group G is a T-group if $G \cong G(X, V, u, v)$ for some $\langle X, V, u, v \rangle$.

¹ This work was supported in part by NSF Grants GP 7252 and GP 5497.

One property of T-groups is clear: the direct sum of a family of T-groups is again a T-group. Every divisible p-group is certainly a T-group, and the reduced part of a T-group is again a T-group.

Before stating our main results concerning these groups, let us recall a few basic definitions. Let G be any reduced abelian p-group. Define the subgroups $p^{\alpha}G$ for each ordinal α as usual by the rules: $p^{0}G = G$; $p^{\alpha}G = \{px \mid x \in p^{\alpha-1}G\}$ if $\alpha-1$ exists; $p^{\alpha}G = \bigcap_{\beta<\alpha}p^{\beta}G$ if α is a limit ordinal. Since G is reduced, there is a first ordinal λ , called the length of G, such that $p^{\lambda}G = 0$. For each ordinal α we set

$$f_G(\alpha) = \operatorname{rank} p^{\alpha}G \cap G[p]/p^{\alpha+1}G \cap G[p],$$

where $G[p] = \{x \in G | px = 0\}$, and we call the cardinal number $f_G(\alpha)$ the α th *Ulm invariant* of G. Finally we let ω denote the first infinite ordinal and Ω denote the first uncountable ordinal.

The description of T-groups is now accomplished by the following theorems.

- (A) If G and H are reduced T-groups, then G and H are isomorphic if and only if $f_G(\alpha) = f_H(\alpha)$ for each ordinal α .
- (B) Let f be a map of an ordinal λ to a set of cardinal numbers. Then there exists a reduced T-group G of length λ such that $f_G(\alpha) = f(\alpha)$ for each $\alpha < \lambda$, if and only if f satisfies the following conditions:
 - (i) $\lambda = \sup \{\alpha + 1 | f(\alpha) \neq 0 \}$;
 - (ii) if α is a limit ordinal such that $\alpha + \omega < \lambda$, and $0 \le \eta < \omega$, then

$$\sum_{\alpha+\eta \leq \beta < \alpha+\omega} f(\beta) \geq \sum_{\alpha+\omega \leq \beta < \lambda} f(\beta).$$

(C) A reduced p-group G is a direct sum of countable groups if and only if G is a T-group of length at most Ω .

When specialized to countable p-groups, (A) and (C), of course, reduce to Ulm's Theorem, and in the case of direct sums of countable groups they reduce to the theorem of Kolettis [2]. Our results are not independent of Ulm's Theorem, however, since it is used to establish (C). The proofs of (A), (B) and (C) will appear elsewhere.

Actually T-groups have been studied before in a different guise. In [3], Nunke defines a reduced p-group G to be totally projective if

$$p^{\alpha}\operatorname{Ext}(G/p^{\alpha}G,A)=0$$

for all ordinals α and every group A, and he obtains a number of properties of these groups. Quite recently Hill [1] has announced that two totally projective groups with the same Ulm invariants are isomorphic. Now it is easily verified that if G is a reduced T-group and α is

an ordinal, then both $p \sim G$ and $G/p \sim G$ are T-groups. Moreover, (A) and (B) yield that a T-group whose length is a limit ordinal is a direct sum of T-groups of smaller length. These last two facts, in conjunction with [3, 2.6], imply that every reduced T-group is totally projective. On the other hand, if H is a totally projective group, then the function f_H necessarily satisfies condition (ii) of (B). Consequently there is a reduced T-group G having the same Ulm invariants as H, and Hill's theorem guarantees that G and H are isomorphic. Thus a reduced abelian p-group is totally projective if and only if it is a T-group.

The foregoing results further provide a characterization of the class of all reduced T-groups in terms of certain natural group-theoretic properties. Let \mathcal{K} be a class of reduced abelian p-groups. Then \mathcal{K} coincides with the class of all reduced T-groups if and only if \mathcal{K} has the following properties: (1) \mathcal{K} is closed under isomorphism; (2) \mathcal{K} is closed under direct sums; (3) if $G \in \mathcal{K}$ and the length of G is a limit ordinal, then G is a direct sum of groups in \mathcal{K} of smaller length; (4) for each p-group G and each ordinal α , $G \in \mathcal{K}$ if and only if both $G/p^{\alpha}G$, $p^{\alpha}G \in \mathcal{K}$; (5) if an abelian p-group G has no elements of infinite height, i.e., $p^{\alpha}G = 0$, then $G \in \mathcal{K}$ if and only if G is a direct sum of cyclic groups. Thus the class of all reduced T-groups is the smallest class of reduced p-groups that has properties (1)–(4) and contains the finite groups.

REFERENCES

- 1. P. Hill, Ulm's theorem for totally projective groups, Notices Amer. Math. Soc. 14 (1967), 940.
 - 2. G. Kolettis, Direct sums of countable groups, Duke Math. J. 27 (1960), 111-125.
- 3. R. Nunke, Homology and direct sums of countable abelian groups, Math. Z. 101 (1967), 182-212.

VANDERBILT UNIVERSITY,

CALIFORNIA INSTITUTE OF TECHNOLOGY AND UNIVERSITY OF CALIFORNIA, LOS ANGELES