A BRUCK-RYSER TYPE NONEXISTENCE THEOREM

BY STANLEY E. PAYNE

Communicated by Irving Reiner, March 21, 1968

Let P be a regular, bipartite graph of degree s+1 on $2(2+s+s^2)$ nodes with girth 6. Equivalently, let P be a $v \times v$ (3, s, s)-configuration with $v=2+s+s^2$. Then it is known that either s+1 or s-1 is a perfect square (see [2] and [3] for related definitions and results). Using techniques suggested by [1] we prove the following:

THEOREM. Let $s \equiv 1 \pmod{8}$ and let $p \equiv 3 \pmod{8}$ be a prime dividing the square-free part of s+1. Then no P can exist. Also, if $s \equiv 3 \pmod{8}$ and $p \equiv 7 \pmod{8}$ is a prime dividing the square-free part of s-1, then no P can exist.

The second statement of the theorem may also be proved by a direct application of the Bruck-Ryser theorem to a (v, k, λ) -design with $\lambda=2$ which may be obtained by "halving" P. Proofs of these and other related results will be given elsewhere.

REFERENCES

- 1. J. K. Goldhaber, A note concerning subspaces invariant under an incidence matrix, J. Algebra 7 (1967), 389-393.
- 2. S. E. Payne, On the nonexistence of a class of configurations which are nearly generalized n-gons (to appear).
- 3. S. E. Payne and M. F. Tinsley, On $v_1 \times v_2$ (n, s, t)-configurations, J. Combinatorial Theory (to appear).

MIAMI UNIVERSITY