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We consider nonlinear eigenvalue problems of the general form : 

(1) Lu = F(\,x,u), X&D, 

(2) p(x)du/dv + a(x)u = 0, x G dD. 

Here x = (xi, x2, • • • , xm) and 

(3) 

L<l> — X) di[0i/(tf)dy0] — a0(x)(t), aij(x) = a^{x) 

m m 

d<t> ~ 
— s 2-, ni{x)aij{x)dj<t> 

a(x)/3(x) ^ 0, a{x) fâ 0, a(x) + 0(x) > 0 

x E D; 

\x e oD. 

All coefficients and the derivatives of the a#(#) are continuous on the 
appropriate closed sets 75 or dD, and the latter is piecewise smooth 
with exterior unit normal vector (ni(x), th(x)t • • • 9 nm(x)) at x£;dD. 
We first prove a simple but useful result on conditions for the non­
existence of positive solutions of (l)-(2). 

THEOREM 1. Let F(\, x, z) be continuous on #££>, JS>0. For any 
positive continuous f unction r(x) on "D, let ti\{r} be the least eigenvalue of 

1 This work was supported under Contract DAHC 04-68-C-0006 with the U. S. 
Army Research Office (Durham). 
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L* + ixr(x)t = 0, x G D, 
(4) 

p(x)drp/dv + a(x)f = 0, x G dD. 
Then (l)-(2) has no positive solution for any XGA{f} where 

(5) A{r} s {x| F(\, x, z) + n{r]r(x)z ** 0, ail x G D, z > 0}. 

PROOF. Suppose (l)-(2) has a positive solution, u(x)>0, x G A for 
a given fixed X. Then this solution trivially satisfies 

Lu + m{r}r(x)u = F(\, x, u) + ni{r}r(x)u 

and (2). Since L is selfadjoint, the right-hand side must be orthogonal 
to Mx) , the eigenf unction of (4) belonging to ix\{r}. From (3) it 
follows that ^i(x) is of one sign on D. Thus the orthogonality relation 
requires that the continuous right-hand side change sign on D. Hence 

Of course piecewise continuous FÇK, #, u) and r(x)>0 are easily 
included by replacing ?*0 in definition (5) by either alternative: >0 
or <0. The above theorem generalizes some nonexistence results 
contained in Keller & Cohen [l]. 

We now consider some special cases of (l)-(2) in which positive 
solutions are known or conjectured to exist. The problems are of the 
form: 

Lu + \r(x)u = f(x, u), x G D, 
(6) 

p(x)du/dv + a(x)u = 0, x G dD9 

where r{x) is continuous and positive on D. 
Some nonexistence results for the above problem are a simple conse­

quence of Theorem 1. 

COROLLARY 1.1. (a) For some constant k letf(x> z)>kr(x)z for all 
z>0 and xÇzD* Then (6) has no positive solutions f or any X f§/*i {r} +k. 

(b) For some constant k let f(xt z)<kr(x)z for all z>0, and x^D. 
Then (6) has no positive solution for any \^jxi{r} +k. 

PROOF, (a) F(K, x, z)^f{x, z)—\r(x)z>(k—XjrWz^ —fxi{r}r(x)z 
for s>0ifX^Mi{'}+*. ThenXGA{r}. 

(b) As above, we see that F(X, x, z) < -~ixi{r}r(x)z if X^/xi{^} +&• 
Note that k in the Corollary may have either sign, but the case 

k = 0 is of particular interest. It implies that if (6) is to have positive 
solutions for all X^0, then ƒ(x, z) must change sign on z>0, x&D. 
In a recent paper D.S.Cohen [2] proves that (6) has unique positive 
solutions for 0 ̂  X < MI {f} when ƒ (#, z) ss —ƒ (x) +g(x, z) where : 
/ (*)<0, g(x, z)>0, g,(x, z)>0, gez(x, z)>0 and ge(x, z)z>g(x, z) for 



i968] POSITIVE SOLUTIONS OF NONLINEAR EIGENVALUE PROBLEMS 889 

all s>0, xGD. It can be shown that if ƒ(#, 0)<0, fz(x, z)>0 for all 
2>0, xÇzD and lim^oojf̂ ff, s)= oo, then (6) has positive solutions 
for all X. Under these conditions D. Cohen has observed that a result 
of Levinson [3] implies that (6), with L=A and jS^O, has solutions 
for all values of X. We shall show that positive solutions of (6) are 
unique if only fz(x, z) is increasing in z for z>0 and ƒ(#, 0)^0 . 

THEOREM 2. Letf(x, z) have a continuous z-derivative and satisfy for 
all xED: 

(a) ƒ(*,(>) «ƒ„(*) £ 0 , 

(b) ƒ.(*, s) > ƒ,(*, O > 0 if z > z' > 0. 

Then positive solutions of (6) are unique (for all \for which they exist). 

PROOF. Assume u(x) and v(x) are distinct positive solutions of (6) 
for the same value of X. Then since ƒ,(#, z) is continuous for z>0, 
we have 

f(x, u(x)) — f(x, v(x)) = q(x, u(x), v(x))[u(x) — v(x)] 

where 

ç(#;w, v) ss I ƒ*(#, /#(#) + (1 — t)v(jx 
Jo 

(8) #(#;w, v) sa I ƒ,(*, /«(OP) + (1 — t)v(x))dt. 
J a 

Thus with w(x)=u(x)—v(x)9 we obtain from (6) for u and v: 

£w + [\r(x) — g(#; w, v)]w = 0, « G A 

$(%)dw/dv + a(x)w = 0, » G dZ>. 

Noting that/(x, u(x)) —f(x, 0) = (z(#; w(#), 0)u(x) we can write (6) as 

Lu + [\r(x) — q(x; u, 0)]u = jfo(#), ff £ D, 

P(x)du/dv + a{x)u = 0, * G d-D. 

Now consider the two eigenvalue problems, with eigenvalue param­
eters <r and r : 

Z,<£ + [orr(*) - q(x; u} v)]<t> = 0, » G D9 
(11a) 

$(x)d<t>/dv + «(#)<*> = 0, * G d#; 
14 + [rr(*) - g(«; ft, 0)ty = 0, « G C , 

(lib) p(x)d+/dv + a(x)f = 0, « G dZ). 

The least eigenvalue, <xi and ri respectively, of each of these problems 
can be characterized by the variational principle: 
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(Tl = min <Q[<t>] + f fq(x; u, v)^(x)dx\ / # [ « ] , 

n = min <Q[<t>] + f fq(x; u, 0)^(x)dx\ / ffM-
* €<* ^ J DJ ) I 

Here the class of admissable functions is, say, Ct^ {^|0GC(]D) 
r\C(D)\ <Kx)=09 xE.dDx) where /9(a) = 0 if and only if x&dDly 

dD=dD^JdD2i 3Anô.£>2 = 0 and: 

GW = f f I L <Hj(*)à*l>àj4> + a0(x)<l>*] dx + f °^-ô2ds, 

HM s f If(*)*2i*. 

Since/2(x, 2) is increasing in z for s > 0 and z/(x) > 0 on D, we must 
have for all x£J9 , 

#(#; u(x), v(x)) > g(#; w(#), 0). 

Thus from the above variational principle it follows that 

0*1 > Ti. 

By assumption, w(x)f^Qy and so the parameter X appearing in (9) 
must be some eigenvalue of the problem (11a). Since <Ti is the least 
eigenvalue of that problem we must have X ^ O * I > T I . NOW write 
(10) as: 

Lu + [rir(x) — q(x\ u, 0)]u = f0(x) + l ( r i — X)r(x)u(x), x £ D , 

/3(x)du/dv + a(x)u = 0, x G dD. 

But ri is the least eigenvalue of ( l ib ) and so the right-hand side in 
the above differential equation must be orthogonal to ^i(#), the 
eigenfunction belonging to n . However, this is impossible since ^i(tf) 
is of one sign on D and, since u(x) is a positive solution, 

ƒ<>(*) + (ri - \)r(x)u(x) < 0 o n D . 

The contradiction implies w(x) = 0. B 
The above proof remains valid if we relax the monotonicity condi­

tion (7b) to just nondecreasing derivative, fs(x, z) *zfz(x, z')t z>z'>0; 
but strengthen condition (7a) to /o(#)<0. Clearly our result also 
applies to the case with ƒ s=/(X, x, u) provided (7) holds for the appro­
priate values of X. 
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Many additional results have been obtained under the hypothesis 
of Theorem 2; namely: (i) positive solutions of (6) are increasing 
functions of X for all x £Z) ; (ii) the set of X for which positive solutions 
of (6) exist is open above; (iii) if f0(x) ss 0, then (6) has no positive 
solutions for all X^Xi where Xi is the least eigenvalue of 

L<j> + [\r(x) - ƒ„(*; 0)]* « 0, x G D, 

0(x)d<t>/dv + a(x)<l> = 0, x G dD\ 

(iv) i f / 0 (x )<0 on Dt then (6) has positive solutions for all X<Xi; 
(v) if fo(x) < 0 on D and a positive solution of (6) exists for some X', 
then positive solutions exist for all X^X'. 

Also, we can show that (6) has a positive solution for arbitrarily 
large X if in addition to (7) and fo(x) < 0 on D we have lim*-» f*(x> z) 
= + oo o n D , Combined with (v) above and Theorem 2 this yields 
unique positive solutions of (6) for all X. The results in (i)-(v) are 
proven by combining the technique in Theorem 2 with the use of the 
Positivity Lemma as in [ l ] , and are thus constructive results. Varia­
tional procedures are employed to show existence for arbitrarily large 
X. The detailed proofs will be given elsewhere. 
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