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This paper sketches the proofs that (1) an automorphism of a com­
plete filtered ring is a limit of successive approximations, (2) given an 
nth order approximate automorphism, there is an obstruction to 
prolonging it to an (n + l)st order approximation, the obstruction 
lying in a certain 2nd cohomology group, and (3) the mapping which 
sends an nth order approximate automorphism to its obstruction is 
a crossed homomorphism from the multiplicative group of nth order 
approximate automorphisms to the (additive) 2nd cohomology group 
containing the obstructions. The rings in question need not be associ­
ative: we tacitly assume that there is given a "category of interest," 
6, in the sense of [l ] (which may be, in particular, the category of 
associative, Lie, or commutative associative rings), and "ring" and 
"morphism" are meant relatively to <B. The cohomology groups are 
the Yoneda-type groups introduced in [ l ] , but note that for the cate­
gories of associative, Lie, and commutative associative algebras over 
a fixed coefficient field these coincide, respectively, with the Hoch-
schild, Chevalley-Eilenberg, and Harrison groups (cf. [ l] and [2]). 

1. Recall, following [ l ] , that a complete filtered ring AZ) • • • 
D FiAZ) Fi+iAZ) • • • is itself a limit of successive approximations. 
For let A((t)) be the ring of formal power series XX-n^M*» a«E^4, 
let App-4 be the subring of those power series with diÇ-FiA, let 
Fj (App A ) = { YjUit11 ai €: F{+jA } = ir*App A, and set Appy A 
= App ^/Fy+iApp A. Then App0 A is the completion of the as­
sociated graded ring of Ay there are natural epimorphisms 
Appo ^4«—Appi A<—App2 i4<— • • • , App A is the inverse limit of this 
sequence, and letting (t~l — 1) denote the ideal of App A consisting 
of all t~la—a, a G App Ay there is a natural isomorphism 
App A/(ir1--l)^A. Thus A can be recaptured from the successive 
approximations Appw A. For simplicity, we henceforth denote Appn A 
by An and App A by A^. The latter has a gradation in which the 
homogeneous elements of degree i are of the form at\ aÇzFiA. This 
gradation is compatible with the filtration, and induces a gradation on 
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every An. Further, i M has an additive endomorphism a—H~la which 
reduces gradation and increases filtration; it will be denoted simply 
t~l, as will the endomorphism which it induces on every An. 

A filtration-preserving morphism ƒ: A-+B of complete filtered rings 
induces for every n (including oo) a morphism fn: An—*Bn which 
respects the gradation and commutes with tr1, and ƒ<» is the inverse 
limit of the/». Since ƒ«, carries the ideal (tr1 — 1) of A^ into the corre­
sponding ideal of B, it induces a morphism of A^/fjr1 — 1) =A into 
Bo0/(t~

1 — l)=B, and this induced morphism is just ƒ itself. Thus ƒ 
may be viewed as the limit of the approximations fn. Note moreover 
that any gradation-preserving morphism A^—>BW which commutes 
with tr1 is of the form ƒ«, for some filtration preserving/: A-+B. 

There are other ways to approximate a filtered ring A, for example 
by using Trunc A> the subring of App A consisting of those elements 
which are just polynomials in t~l (cf. Rim [5], following Guillemin-
Sternberg [4]). 

2. If M is a module over a (not necessarily filtered) ring A then 
&2(A, M) will denote the Baer group of equivalence classes of singular 
extensions 0—»M—»J5—>A—>0. When A and M are graded then it will 
be tacitly understood that so is B and that all the morphisms are of 
degree 0. The group S3C4, M) consists, following [ l ] , of classes of 
"admissible sequences" E: 0—>M—>NJÎ*B—>A—»0. In the associative, 
Lie, and commutative associative cases, these are exact sequences of 
rings (M being a zero ring) and morphisms in which B operates on iV, 
where p(nn') =np(n') =p(n'n) for all n, nfE:Ny and where, letting B 
operate on M by means of the epimorphism B—>Af the morphism 
M-+N respects the operation of B. The sequence E represents 0 if and 
only if there is a "solution" (commutative diagram) 

X __ 

II Mi || 
0 -> M -> N -> B -> A -> 0, 

in which case the set of solutions forms, in a natural way, a principal 
homogeneous space over 8>2(A, M). 

Now, A being filtered and complete, let us define on the under­
lying additive group of An a new multiplication sending (a, /3) to 
f3'af}f and denote this new ring by t~jAn. Then for every nonnegative 
tn, n, and k^n there is a monomorphism i: t~~m~~k An^k-^trmAn, an 
epimorphism T: t-mAn—>t-mAn-.k, and every ring morphism/: A m *An 

which commutes with tr1 induces a morphism t~iAm—>t~iAn- The 
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latter will still be denoted by / . There is, for every w è 0, an admissible 
sequence 

E:0 -> r n ~ M 0 -> flAn -» An -» A0 -» 0. 

This represents 0 since it has a "trivial" solution in which B is i4»+i, X 
is i : t-lAn-*An+i and /* is 7r: An+i—>An. Note that all the ring mor-
phisms considered here preserve filtration, gradation, and commute 
with tr1; this will always be tacitly assumed. 

An nth order approximate automorphism of A is by definition an 
automorphism of An\ these form a group, Autw A. When / £ A u t w A 
is given there is another solution for E in which ~B is still i n + i , but in 
which \ = if~l and fi =/7r. Denoting by e/ the class of this solution and 
by eo that of the trivial one, the element Obs ƒ = e/ — e0 of &2(A 0, t~~n~lA 0) 
vanishes if and only if ƒ can be extended to an automorphism of An+\. 
For that, in effect, is what it means for the two solutions to be 
equivalent. 

3. If/, g G Autn A, then 

Obs/g = ef0 - e0 = (e/a - e/) + (ef - e0). 

The second term is just Obs / . Now Auto A operates in a natural way 
on 8>2(A0, p - ^ o ) and there is a natural morphism Autn .4—»Aut0 ̂ 4 
by means of which Autn A also operates. I t is easy to verify that 
e/g-ef =f(eg-e0) =ƒ Obs g, yielding 

THEOREM 1. O b s / g = / O b s g+Obsf. 
Denoting by Fi Autw A the kernel of the morphism Autw A—>A\\UA, 

it follows that Obs| F\ Aut„ A-*&2(Ao, t~n~1Ao) is a group morphism. 

This is the general statement of the "Obstruction Morphism The­
orem" of [3]. 
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