THE OBSTRUCTION TO AN AUTOMORPHISM OF A FILTERED RING

MURRAY GERSTENHABER1

Communicated January 31, 1968

This paper sketches the proofs that (1) an automorphism of a complete filtered ring is a limit of successive approximations, (2) given an nth order approximate automorphism, there is an obstruction to prolonging it to an (n+1)st order approximation, the obstruction lying in a certain 2nd cohomology group, and (3) the mapping which sends an nth order approximate automorphism to its obstruction is a crossed homomorphism from the multiplicative group of nth order approximate automorphisms to the (additive) 2nd cohomology group containing the obstructions. The rings in question need not be associative: we tacitly assume that there is given a "category of interest," C, in the sense of [1] (which may be, in particular, the category of associative, Lie, or commutative associative rings), and "ring" and "morphism" are meant relatively to C. The cohomology groups are the Yoneda-type groups introduced in [1], but note that for the categories of associative, Lie, and commutative associative algebras over a fixed coefficient field these coincide, respectively, with the Hochschild, Chevalley-Eilenberg, and Harrison groups (cf. [1] and [2]).

1. Recall, following [1], that a complete filtered ring $A \supset \cdots$ $\supset F_{iA} \supset F_{i+1}A \supset \cdots$ is itself a limit of successive approximations. For let A(t) be the ring of formal power series $\sum_{i=-n}^{\infty} a_i t^i$, $a_i \in A$, let App A be the subring of those power series with $a_i \in F_i A$, let $F_{i}(\operatorname{App} A) = \left\{ \sum a_{i} t^{i} \middle| a_{i} \in F_{i+j} A \right\} = t^{-i} \operatorname{App} A,$ and =App A/F_{j+1} App A. Then App₀ A is the completion of the associated graded ring of A, there are natural epimorphisms $App_0 A \leftarrow App_1 A \leftarrow App_2 A \leftarrow \cdots$, App A is the inverse limit of this sequence, and letting $(t^{-1}-1)$ denote the ideal of App A consisting of all $t^{-1}\alpha - \alpha$, $\alpha \in App A$, there is a natural isomorphism App $A/(t^{-1}-1)\cong A$. Thus A can be recaptured from the successive approximations $App_n A$. For simplicity, we henceforth denote $App_n A$ by A_n and App A by A_{∞} . The latter has a gradation in which the homogeneous elements of degree i are of the form at^i , $a \in F_iA$. This gradation is compatible with the filtration, and induces a gradation on

¹ The author gratefully acknowledges the support of the Institute for Advanced Study and of the N.S.F. through grant GP 3683 with the University of Pennsylvania.

every A_n . Further, A_{∞} has an additive endomorphism $\alpha \to t^{-1}\alpha$ which reduces gradation and increases filtration; it will be denoted simply t^{-1} , as will the endomorphism which it induces on every A_n .

A filtration-preserving morphism $f\colon A\to B$ of complete filtered rings induces for every n (including ∞) a morphism $f_n\colon A_n\to B_n$ which respects the gradation and commutes with t^{-1} , and f_∞ is the inverse limit of the f_n . Since f_∞ carries the ideal $(t^{-1}-1)$ of A_∞ into the corresponding ideal of B, it induces a morphism of $A_\infty/(t^{-1}-1)=A$ into $B_\infty/(t^{-1}-1)=B$, and this induced morphism is just f itself. Thus f may be viewed as the limit of the approximations f_n . Note moreover that any gradation-preserving morphism $A_\infty\to B_\infty$ which commutes with t^{-1} is of the form f_∞ for some filtration preserving $f\colon A\to B$.

There are other ways to approximate a filtered ring A, for example by using Trunc A, the subring of App A consisting of those elements which are just polynomials in t^{-1} (cf. Rim [5], following Guillemin-Sternberg [4]).

2. If M is a module over a (not necessarily filtered) ring A then $\mathcal{E}^2(A, M)$ will denote the Baer group of equivalence classes of singular extensions $0 \to M \to B \to A \to 0$. When A and M are graded then it will be tacitly understood that so is B and that all the morphisms are of degree 0. The group $\mathcal{E}^3(A, M)$ consists, following [1], of classes of "admissible sequences" $E \colon 0 \to M \to N \xrightarrow{\rho} B \to A \to 0$. In the associative, Lie, and commutative associative cases, these are exact sequences of rings (M being a zero ring) and morphisms in which B operates on N, where $\rho(nn') = n\rho(n') = \rho(n'n)$ for all $n, n' \in N$, and where, letting B operate on M by means of the epimorphism $B \to A$, the morphism $M \to N$ respects the operation of B. The sequence E represents 0 if and only if there is a "solution" (commutative diagram)

$$\begin{array}{ccc} 0 \to N \xrightarrow{\lambda} \overline{B} \to A \to 0 \\ & \parallel & \mu \downarrow & \parallel \\ 0 \to M \to N \to B \to A \to 0, \end{array}$$

in which case the set of solutions forms, in a natural way, a principal homogeneous space over $\mathcal{E}^2(A, M)$.

Now, A being filtered and complete, let us define on the underlying additive group of A_n a new multiplication sending (α, β) to $t^{-i}\alpha\beta$, and denote this new ring by $t^{-i}A_n$. Then for every nonnegative m, n, and $k \leq n$ there is a monomorphism $i: t^{-m-k}A_{n-k} \to t^{-m}A_n$, an epimorphism $\pi: t^{-m}A_n \to t^{-m}A_{n-k}$, and every ring morphism $f: A_m \to A_n$ which commutes with t^{-1} induces a morphism $t^{-i}A_m \to t^{-i}A_n$. The

latter will still be denoted by f. There is, for every $n \ge 0$, an admissible sequence

$$E: 0 \to t^{-n-1}A_0 \to t^{-1}A_n \to A_n \to A_0 \to 0.$$

This represents 0 since it has a "trivial" solution in which \overline{B} is A_{n+1} , λ is $i: t^{-1}A_n \rightarrow A_{n+1}$ and μ is $\pi: A_{n+1} \rightarrow A_n$. Note that all the ring morphisms considered here preserve filtration, gradation, and commute with t^{-1} ; this will always be tacitly assumed.

An *n*th order approximate automorphism of A is by definition an automorphism of A_n ; these form a group, $\operatorname{Aut}_n A$. When $f \in \operatorname{Aut}_n A$ is given there is another solution for E in which \overline{B} is still A_{n+1} , but in which $\lambda = if^{-1}$ and $\mu = f\pi$. Denoting by e_f the class of this solution and by e_0 that of the trivial one, the element Obs $f = e_f - e_0$ of $e^2(A_0, t^{-n-1}A_0)$ vanishes if and only if f can be extended to an automorphism of $e^{-n+1}A_0$. For that, in effect, is what it means for the two solutions to be equivalent.

3. If $f, g \in Aut_n A$, then

Obs
$$fg = e_{fg} - e_0 = (e_{fg} - e_f) + (e_f - e_0)$$
.

The second term is just Obs f. Now Aut₀ A operates in a natural way on $\mathcal{E}^2(A_0, t^{-n-1}A_0)$ and there is a natural morphism Aut_n $A \to \operatorname{Aut}_0 A$ by means of which Aut_n A also operates. It is easy to verify that $e_{fg} - e_f = f(e_g - e_0) = f$ Obs g, yielding

THEOREM 1. Obs fg = f Obs g + Obs f.

Denoting by F_1 Aut_n A the kernel of the morphism Aut_n $A \rightarrow \text{Aut}_0 A$, it follows that Obs F_1 Aut_n $A \rightarrow \mathbb{E}^2(A_0, t^{-n-1}A_0)$ is a group morphism.

This is the general statement of the "Obstruction Morphism Theorem" of [3].

REFERENCES

- 1. M. Gerstenhaber, On the deformation of rings and algebras. II, Ann. of Math. 84 (1966), 1-19.
- 2. ——, The third cohomology group of a ring and the commutative cohomology theory, Bull Amer. Math. Soc. 73 (1967), 950-954.
 - 3. ——, On the deformation of rings and algebras. III, Ann. of Math., (to appear).
- 4. V. Guillemin and S. Sternberg, An algebraic model of transitive differential geometry, Bull. Amer. Math. Soc. 70 (1964), 16-47.
- 5. D. S. Rim, Deformation of transitive Lie algebras, Ann. of Math. 83 (1966), 339-357.

University of Pennsylvania