A COMBINATION OF MONTE CARLO AND CLASSICAL METHODS FOR EVALUATING MULTIPLE INTEGRALS

BY SEYMOUR HABER

Communicated by E. Isaacson, February 29, 1968

1. Stochastic quadrature formulas. In the simplest "Monte Carlo" scheme for numerically approximating the integral

$$I = \int_{G_s} f(\mathbf{x}) d\mathbf{x}$$

 $(G_s$ is the closed unit cube in E^s), N points x_1, \dots, x_N are chosen at random in G_s and the quantity

$$J_0 = \frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x}_i)$$

is taken as an estimate of I. The error analysis is probabilistic. Regarding the x_i as (pairwise) independent random variables uniformly distributed on G_s , J_0 is a random variable with mean I; the amount by which it is apt to differ from I is estimated in terms of its standard deviation $\sigma(J_0)$. In general (for $f \in L^2(G_s)$),

$$\sigma(J_0) = C_0(f)N^{-1/2};$$

and it is usual to consider 3σ (or even 2σ) as a reliable upper bound on |J-I|.

Let D_s^n denote the set of real functions f such that

$$\frac{\partial^{n_1+\cdots+n_s}}{(\partial x^1)^{n_1}\cdots(\partial x^s)^{n_s}}f(x^1,x^2,\cdots,x^s)$$

is continuous on G_s whenever $n_1, n_2, \dots, n_s \le n$. N. S. Bahvalov [1], in a study of lower bounds on quadrature errors showed that for the class D_s^n the error of any nonrandom (e.g. Newton-Cotes, Gaussian) quadrature method is $\Omega(N^{-n/s})$; for random methods the best he could show was $\sigma = \Omega(N^{-(n/s+1/2)})$ and he showed that for the set of periodic functions in D_s^n there in fact exist methods for which $\sigma = O(N^{-(n/s+1/2)})$.

In this note I shall give a general description of a class of formulas which combine the Monte Carlo and classical approaches to get

¹ Hardy's notation: $f = \Omega(g)$ iff g = O(f).

errors of the order of $N^{-(n/s+1/2)}$ for the class D_s^n , and construct some specific formulas of this class for the case n=2. A more complete development, and proofs, will appear elsewhere.

DEFINITION. A "stochastic quadrature formula (s.q.f) of degree n (for G_s)" is a set of 1-dimensional random variables A_1, \dots, A_k and s-dimensional random variables X_1, \dots, X_k , such that

(1) $\sum_{i=1}^{k} A_i P(X_i) \equiv \int_{G_i} P$ whenever P is a polynomial (in s variables) of degree n or lower; but there is a polynomial P^* of degree n+1 such that

$$\sum_{i=1}^k A_i P^*(X_i) \not\equiv \int_{G_*} P^*.$$

(2) $m(\sum_{i=1}^k A_i f(X_i)) = \int_{G_s} f$ whenever $f \in L^2(G_s)$ (" $m(\cdot)$ " denotes the mean of a random variable).

For example, X_1 uniformly distributed over G_s , $X_2 = (1/2, \dots, 1/2) - X_1$, and $A_1 \equiv A_2 \equiv 1/2$ define an s.q.f. of degree 1.

I shall write "Q(f)" for $\sum_{1}^{k} A_{i}f(X_{i})$, and speak of "the quadrature formula Q." In the usual way one may apply Q to any region A obtainable from G_{s} by an affine transformation, without changing its degree. The adapted formula will be denoted by " $Q_{(A)}$." I shall denote by " Q_{M} " the formula resulting from partitioning G_{s} into M congruent subcubes and applying Q to each. The number of function evaluations used in a quadrature formula will be denoted by "N"; for Q_{M} , N = kM.

THEOREM. If Q is a stochastic quadrature formula of degree n-1 and $f \in D_s^n$, then

(2)
$$\sigma(Q_M(f)) \sim C(f) N^{-(n/s+1/2)}$$

where

(3)
$$C(f) = \frac{k^{n/s+1/2}}{2^{n+s}n!} \left(\sum_{G_s} m_{ij} \int_{G_s} f^{(i)} f^{(j)} \right)^{1/2}.$$

Here " $f(N) \sim g(N)$ " means $f(N)/g(N) \to 1$ as $N \to \infty$. The sum in (3) runs over all *n*-tuples i and j of integers between 1 and s. The notations used are: If $i = (i^1, i^2, \dots, i^n), j = (j^1, \dots, j^n)$, then

$$f^{(i)} = \frac{\partial^n f}{(\partial x^{i_1}) \cdot \cdot \cdot \cdot \cdot (\partial x^{i_n})}, \qquad \mathbf{x}^{(i)} = x^{i_1} \cdot x^{i_2} \cdot \cdot \cdot \cdot \cdot x^{i_n}$$

and

$$m_{ij} = m \left(\left(Q_{(A)}(\mathbf{x}^i) - \int_A \mathbf{x}^i \right) \left(Q_{(A)}(\mathbf{x}^j) - \int_A (\mathbf{x}^j) \right) \right)$$

where $A = A_s$ is the cube $|x^i| \le 1, i = 1, 2, \dots, s$.

- C(f) will rarely be known a priori; however a good a posteriori estimate of $\sigma(Q_M(f))$ may be obtained by a modification of the calculation in the manner described in [3].
- 2. Formulas of degree 2. In [2] an s.q.f. Q of degree zero with k=1was investigated; in [3] one of degree 1 with k=2 was given. For $n \ge 2$ the situation is more complicated; it is a consequence of a theorem of Stroud 4, that

$$k \ge \binom{n+s}{\lceil n/2 \rceil}$$

("[·]" denoting the greatest integer function), so that k cannot be independent of s. For constant coefficient formulas we have

THEOREM. If

$$Q(f) = \frac{1}{k} \sum_{i=1}^{k} f(X_i)$$

is an s.q.f. of degree ≥ 2 for G_s , then $k \geq 3s+1$.

THEOREM. If $(a_{i,j})$ is a $(3s+1) \times k$ real matrix such that

- (1) $a_{i,j} = k^{-1/2}$ for all j, (2) $a_{i,1}^2 + a_{i,2}^2 + \cdots + a_{i,k}^2 = 1$ for all i,
- (3) $a_{i,1}a_{i',1}+a_{i,2}a_{i',2}+\cdots+a_{i,k}a_{i',k}=0$ if $i\neq i'$,
- (4) $a_{i,j}^2 + a_{i+1,j}^2 + a_{i+2,j}^2 = 3/k$ for all j and for $i = 2, 5, 8, \dots, 3s-1$, we shall denote by " V_L " ($L=1, 2, \dots, s$) the subspace of E^k spanned by the (3L-1)st, 3Lth, and (3L+1)st rows of $(a_{i,j})$ and by " S_L " the sphere of radius $(3/k)^{1/2}$ in V_L , centered at the origin. Then if

$$X_{j} = (X_{j}^{1}, X_{j}^{2}, \cdots, X_{j}^{s}), \quad j = 1, 2, \cdots, k$$

are random variables such that, for $L=1, 2, \cdots s$,

$$(X_1^L, X_2^L, \cdots, X_k^L)$$

is uniformly distributed on S_L , then

$$Q(f) = \frac{1}{k} \sum_{i=1}^{k} f(X_i)$$

is an s.q.f. of degree 2 for the cube As.

It remains to be seen for which k such matrices exist; it is desirable that k be as low as possible. Here we have

THEOREM. If there exists a Hadamard matrix ([5], [6]) of order r, then for any s such that $3s+1 \le r$, there is a $(3s+1) \times r$ matrix $(a_{i,j})$ satisfying the conditions of the above theorem.

For the top row of the Hadamard matrix H_r may be taken to have all entries=1; and then the first 3s+1 rows of $r^{-1/2}H_r$ satisfy all conditions.

Since Hadamard matrices of order r=4p are known to exist at least up to p=29, k can be taken $\leq 3s+4$ for $s\leq 38$; and can in fact be taken equal to 3s+1 for $s=1, 5, 9, \cdots, 33$.

The classical approaches to efficient quadrature have been: (1) To take advantage of as much smoothness as the integrand may have by constructing formulas of maximum degree using a fixed number of points; (2) To find formulas with a fixed number of points which minimize the error for functions with a given degree of smoothness. The second seems the more practical approach for functions of several variables, where smoothing is apt to be very difficult. With the present formulas, partitioning G_s reduces the error as quickly as possible for each fixed smoothness class D_s^n ; while the first approach continues in use, to reduce the number k in (3).

REFERENCES

- 1. N. S. Bahvalov, On approximate calculation of multiple integrals, Vestnik Moscow Univ. 4 (1959), 3-18.
 - 2. S. Haber, A modified Monte Carlo quadrature, Math. Comp. 20 (1966), 361-368.
- 3. ——, A modified Monte Carlo quadrature. II. Math. Comp. 21 (1967), 388-397.
- 4. A. H. Stroud, Quadrature methods for functions of more than one variable, Ann. New York Acad. Sci. 86 (1960), 776-791.
- 5. J. Williamson, Note on Hadamard's determinant theorem, Bull. Amer. Math. Soc. 53 (1947), 608-613.
- 6. S. W. Golomb and L. D. Baumert, The search for Hadamard matrices, Amer. Math. Monthly 70 (1963), 12-17.

NATIONAL BUREAU OF STANDARDS, WASHINGTON, D.C.