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1. Stochastic quadrature formulas. In the simplest "Monte 
Carlo" scheme for numerically approximating the integral 

(1) / = f f(x)dx 

(G8 is the closed unit cube in Ea), N points xi, • • • , xN are chosen at 
random in G8 and the quantity 

1 N 

N M 

is taken as an estimate of / . The error analysis is probabilistic. Re­
garding the Xi as (pairwise) independent random variables uniformly 
distributed on G8f Jo is a random variable with mean / ; the amount 
by which it is apt to differ from I is estimated in terms of its standard 
deviat ions (Jo). In general (îorf&L2(Gs)), 

and it is usual to consider 3cr (or even 2cr) as a reliable upper bound on 

Let D" denote the set of real functions ƒ such that 

/Ytf1, X2, ' • • , X8) 
(Ox1)*" • • • (da?)* 

is continuous on G8 whenever mf ^2, • • • , n8^n. N. S. Bahvalov [ l ] , 
in a study of lower bounds on quadrature errors showed that for the 
class D" the error of any nonrandom (e.g. Newton-Cotes, Gaussian) 
quadrature method is Q(N-nls) ;x for random methods the best he 
could show was (r = Ö(i\Mn/s+1/2)) and he showed that for the set of 
periodic functions in D* there in fact exist methods for which <r 
= 0(iV- (w/s+1/2)). 

In this note I shall give a general description of a class of formulas 
which combine the Monte Carlo and classical approaches to get 

1 Hardy's notation: ƒ=0(g) iff g = 0(f). 
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errors of the order of JV-(W/H-I/2) for the class D", and construct some 
specific formulas of this class for the case w = 2. A more complete 
development, and proofs, will appear elsewhere. 

DEFINITION. A "stochastic quadrature formula (s.q.f) of degree n 
(for Ga)" is a set of 1-dimensional random variables A\f • • • , Ak and 
^-dimensional random variables X\, • • • , Xki such that 

(1) E?-i AiP(Xi) a Jo9 P whenever P is a polynomial (in s vari­
ables) of degree n or lower; but there is a polynomial P* of degree 
n + 1 such that 

E AiP*(Xi) * f F*. 

(2) m ( Z t i - 4 ; ƒ(*;))== ƒ©. ƒ whenever ƒ EL*(G8) ("m(-)" denotes 
the mean of a random variable). 

For example, X\ uniformly distributed over Gê, Xi~{l/2, • • • , 
1/2) —-Xi, and ^4i=^42^l/2 define an s.q.f. of degree 1. 

I shall write uQ(f)" for ]T* Af{X%)} and speak of "the quadrature 
formula Q." In the usual way one may apply Q to any region A ob­
tainable from Gs by an affine transformation, without changing its 
degree. The adapted formula will be denoted by "(?u)." I shall denote 
by UQM" the formula resulting from partitioning Gs into M congruent 
subcubes and applying Q to each. The number of function evaluations 
used in a quadrature formula will be denoted by "N" ; for QM, N = kM. 

THEOREM. If Q is a stochastic quadrature formula of degree n — 1 and 
f ED?, then 

(2) *(QM<J))~C(J)N-<»'+m 

where 
fcn/s+l/2 / /• Vl/2 

(3) c<J)-i^{z°»)sn • 
Here "f(N)~g(N)» means f(N)/g(N)-+l as iV->oo. The sum in (3) 
runs over all ^-tuples i and j of integers between 1 and s. The nota­
tions used are: If i = (i1, i2, • • • , in), j^C/1» ' * • ,in),then 

dnf 

(dxil) (dxin) 

and 

ntij = mUQU )(x') - J xn \Qw(xJ') - J (*')JJ 
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where A ~A9 is the cube |#*| rgl, i = l, 2, • • • , s. 
C(f) will rarely be known a priori; however a good a posteriori 

estimate of <T{QM{!)) may be obtained by a modification of the calcu­
lation in the manner described in [3]. 

2. Formulas of degree 2. In [2] an s.q.f. Q of degree zero with k = 1 
was investigated; in [3] one of degree 1 with k~2 was given. For 
n^2 the situation is more complicated; it is a consequence of a 
theorem of Stroud [4], that 

( n + s\ 

W2]) 
( " [ • ] " denoting the greatest integer function), so that k cannot be 
independent of s. For constant coefficient formulas we have 

THEOREM. If 

Q(/)-T £/(*<) 
is an s.q.f. of degree è 2 for G8> then k è 3s+1. 

THEOREM. If (aifj) is a (35+1) Xk real matrix such that 
(1) a<,,«*-i/* for all j , 
(2) a?,i+a?,2+ • • • +alk = l for alii, 
(3) öt\iat',i+az\2at',2+ • • * +0t\*a^,fc = O if i^i\ 
(4) uJly+a?+i,y+a?+2,y = 3/& f or all j and for i = 2, 5, 8, • • • ,35 — 1, 

we 5&a/Z denote by u VL" (L = 1, 2, • • • > s) the subspace of Eh spanned by 
the {3L — \)st, 3Lth, and (3L + 1)5* rows of (aitj) and by "SL" the sphere 
of radius (3/k)112 in VL, centered at the origin. Then if 

1 2 8 

Xj = (Xj, Xj, • • • , Xj), j = 1, 2, • • • , k 

are random variables such that, for L = 1, 2, • • -5 , 

(Xi, X2, • * • , Xk ) 

is uniformly distributed on SL, then 

G ( / ) - 4 £/<*>) 
w an s.q.f. of degree 2 for the cube A8. 

I t remains to be seen for which k such matrices exist; it is desirable 
that k be as low as possible. Here we have 
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THEOREM. If there exists a Hadamard matrix ([S], [6]) of order r, 
then f or any s such that 3«s+lâf , there is a (35+1) Xr matrix (a>ij) 
satisfying the conditions of the above theorem. 

For the top row of the Hadamard matrix Hr may be taken to have 
all entries = 1; and then the first 3^+1 rows of r~ll2Hr satisfy all 
conditions. 

Since Hadamard matrices of order r = 4tp are known to exist at least 
up to £ = 29, k can be taken ^Ss+4 for s ̂ 38; and can in fact be 
taken equal to 3s + l for 5 = 1, 5, 9, • • - , 33. 

The classical approaches to efficient quadrature have been: (1) To 
take advantage of as much smoothness as the integrand may have by 
constructing formulas of maximum degree using a fixed number of 
points; (2) To find formulas with a fixed number of points which 
minimize the error for functions with a given degree of smoothness. 
The second seems the more practical approach for functions of several 
variables, where smoothing is apt to be very difficult. With the present 
formulas, partitioning G8 reduces the error as quickly as possible for 
each fixed smoothness class Z>"; while the first approach continues in 
use, to reduce the number k in (3), 
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